Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Northey
4
69 kgDoull
6
71 kgVereecken
7
72 kgDe Buyst
8
72 kgBiałobłocki
9
79 kgMcconvey
11
67 kgOliphant
12
66 kgLampier
13
68 kgBichlmann
14
72 kgYates
15
58 kgGuldhammer
17
66 kgLaverack
18
62 kgPorter
20
73 kgDe Ketele
26
66 kgEbsen
32
58 kgKrotký
43
73 kgCataford
47
70 kgEdmüller
54
70 kgBennett
60
73 kgDe Pauw
61
72 kgDe Gendt
62
75 kgArchbold
64
79 kgAtzori
90
72 kg
4
69 kgDoull
6
71 kgVereecken
7
72 kgDe Buyst
8
72 kgBiałobłocki
9
79 kgMcconvey
11
67 kgOliphant
12
66 kgLampier
13
68 kgBichlmann
14
72 kgYates
15
58 kgGuldhammer
17
66 kgLaverack
18
62 kgPorter
20
73 kgDe Ketele
26
66 kgEbsen
32
58 kgKrotký
43
73 kgCataford
47
70 kgEdmüller
54
70 kgBennett
60
73 kgDe Pauw
61
72 kgDe Gendt
62
75 kgArchbold
64
79 kgAtzori
90
72 kg
Weight (KG) →
Result →
79
58
4
90
# | Rider | Weight (KG) |
---|---|---|
4 | NORTHEY Michael James | 69 |
6 | DOULL Owain | 71 |
7 | VEREECKEN Nicolas | 72 |
8 | DE BUYST Jasper | 72 |
9 | BIAŁOBŁOCKI Marcin | 79 |
11 | MCCONVEY Connor | 67 |
12 | OLIPHANT Evan | 66 |
13 | LAMPIER Steven | 68 |
14 | BICHLMANN Daniel | 72 |
15 | YATES Simon | 58 |
17 | GULDHAMMER Rasmus | 66 |
18 | LAVERACK Edward | 62 |
20 | PORTER Elliott | 73 |
26 | DE KETELE Kenny | 66 |
32 | EBSEN John | 58 |
43 | KROTKÝ Rostislav | 73 |
47 | CATAFORD Alexander | 70 |
54 | EDMÜLLER Benjamin | 70 |
60 | BENNETT Sam | 73 |
61 | DE PAUW Moreno | 72 |
62 | DE GENDT Aimé | 75 |
64 | ARCHBOLD Shane | 79 |
90 | ATZORI Umberto | 72 |