Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Bennett
1
73 kgVereecken
2
72 kgArchbold
3
79 kgDe Pauw
5
72 kgBiałobłocki
6
79 kgGuldhammer
7
66 kgDoull
8
71 kgOliphant
9
66 kgDe Buyst
12
72 kgNorthey
13
69 kgMcconvey
14
67 kgYates
18
58 kgLampier
22
68 kgAtzori
28
72 kgBichlmann
29
72 kgKrotký
30
73 kgEdmüller
31
70 kgEbsen
40
58 kgDe Ketele
65
66 kgPorter
67
73 kgDe Gendt
68
75 kgLaverack
70
62 kgCataford
94
70 kg
1
73 kgVereecken
2
72 kgArchbold
3
79 kgDe Pauw
5
72 kgBiałobłocki
6
79 kgGuldhammer
7
66 kgDoull
8
71 kgOliphant
9
66 kgDe Buyst
12
72 kgNorthey
13
69 kgMcconvey
14
67 kgYates
18
58 kgLampier
22
68 kgAtzori
28
72 kgBichlmann
29
72 kgKrotký
30
73 kgEdmüller
31
70 kgEbsen
40
58 kgDe Ketele
65
66 kgPorter
67
73 kgDe Gendt
68
75 kgLaverack
70
62 kgCataford
94
70 kg
Weight (KG) →
Result →
79
58
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | BENNETT Sam | 73 |
2 | VEREECKEN Nicolas | 72 |
3 | ARCHBOLD Shane | 79 |
5 | DE PAUW Moreno | 72 |
6 | BIAŁOBŁOCKI Marcin | 79 |
7 | GULDHAMMER Rasmus | 66 |
8 | DOULL Owain | 71 |
9 | OLIPHANT Evan | 66 |
12 | DE BUYST Jasper | 72 |
13 | NORTHEY Michael James | 69 |
14 | MCCONVEY Connor | 67 |
18 | YATES Simon | 58 |
22 | LAMPIER Steven | 68 |
28 | ATZORI Umberto | 72 |
29 | BICHLMANN Daniel | 72 |
30 | KROTKÝ Rostislav | 73 |
31 | EDMÜLLER Benjamin | 70 |
40 | EBSEN John | 58 |
65 | DE KETELE Kenny | 66 |
67 | PORTER Elliott | 73 |
68 | DE GENDT Aimé | 75 |
70 | LAVERACK Edward | 62 |
94 | CATAFORD Alexander | 70 |