Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Archbold
2
79 kgBevin
4
75 kgLawless
5
72 kgMühlberger
6
64 kgBallerini
7
71 kgDoull
10
71 kgBiałobłocki
11
79 kgPeters
15
67 kgTedeschi
18
69 kgMcconvey
21
67 kgPichetta
22
56 kgEibegger
23
68 kgWachter
25
72 kgLampier
34
68 kgDibben
36
78 kgOckeloen
42
66 kgMackinnon
43
75 kgScott
63
68 kgPettiti
94
71 kgSchreurs
108
69 kgWood
143
72 kg
2
79 kgBevin
4
75 kgLawless
5
72 kgMühlberger
6
64 kgBallerini
7
71 kgDoull
10
71 kgBiałobłocki
11
79 kgPeters
15
67 kgTedeschi
18
69 kgMcconvey
21
67 kgPichetta
22
56 kgEibegger
23
68 kgWachter
25
72 kgLampier
34
68 kgDibben
36
78 kgOckeloen
42
66 kgMackinnon
43
75 kgScott
63
68 kgPettiti
94
71 kgSchreurs
108
69 kgWood
143
72 kg
Weight (KG) →
Result →
79
56
2
143
# | Rider | Weight (KG) |
---|---|---|
2 | ARCHBOLD Shane | 79 |
4 | BEVIN Patrick | 75 |
5 | LAWLESS Chris | 72 |
6 | MÜHLBERGER Gregor | 64 |
7 | BALLERINI Davide | 71 |
10 | DOULL Owain | 71 |
11 | BIAŁOBŁOCKI Marcin | 79 |
15 | PETERS Alex | 67 |
18 | TEDESCHI Mirko | 69 |
21 | MCCONVEY Connor | 67 |
22 | PICHETTA Ricardo | 56 |
23 | EIBEGGER Markus | 68 |
25 | WACHTER Alexander | 72 |
34 | LAMPIER Steven | 68 |
36 | DIBBEN Jonathan | 78 |
42 | OCKELOEN Jasper | 66 |
43 | MACKINNON Sean | 75 |
63 | SCOTT Jacob | 68 |
94 | PETTITI Alessandro | 71 |
108 | SCHREURS Hamish | 69 |
143 | WOOD Oliver | 72 |