Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bevin
1
75 kgPettiti
2
71 kgEibegger
4
68 kgDoull
7
71 kgPeters
10
67 kgLampier
13
68 kgWachter
17
72 kgBiałobłocki
22
79 kgMühlberger
25
64 kgPichetta
27
56 kgOckeloen
28
66 kgDibben
29
78 kgScott
39
68 kgTedeschi
40
69 kgArchbold
43
79 kgMackinnon
44
75 kgBallerini
52
71 kgWood
66
72 kgLawless
79
72 kgSchreurs
81
69 kgMcconvey
125
67 kg
1
75 kgPettiti
2
71 kgEibegger
4
68 kgDoull
7
71 kgPeters
10
67 kgLampier
13
68 kgWachter
17
72 kgBiałobłocki
22
79 kgMühlberger
25
64 kgPichetta
27
56 kgOckeloen
28
66 kgDibben
29
78 kgScott
39
68 kgTedeschi
40
69 kgArchbold
43
79 kgMackinnon
44
75 kgBallerini
52
71 kgWood
66
72 kgLawless
79
72 kgSchreurs
81
69 kgMcconvey
125
67 kg
Weight (KG) →
Result →
79
56
1
125
# | Rider | Weight (KG) |
---|---|---|
1 | BEVIN Patrick | 75 |
2 | PETTITI Alessandro | 71 |
4 | EIBEGGER Markus | 68 |
7 | DOULL Owain | 71 |
10 | PETERS Alex | 67 |
13 | LAMPIER Steven | 68 |
17 | WACHTER Alexander | 72 |
22 | BIAŁOBŁOCKI Marcin | 79 |
25 | MÜHLBERGER Gregor | 64 |
27 | PICHETTA Ricardo | 56 |
28 | OCKELOEN Jasper | 66 |
29 | DIBBEN Jonathan | 78 |
39 | SCOTT Jacob | 68 |
40 | TEDESCHI Mirko | 69 |
43 | ARCHBOLD Shane | 79 |
44 | MACKINNON Sean | 75 |
52 | BALLERINI Davide | 71 |
66 | WOOD Oliver | 72 |
79 | LAWLESS Chris | 72 |
81 | SCHREURS Hamish | 69 |
125 | MCCONVEY Connor | 67 |