Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 94
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Pichetta
2
56 kgWood
3
72 kgDoull
10
71 kgBallerini
11
71 kgEibegger
14
68 kgOckeloen
25
66 kgPeters
27
67 kgBevin
29
75 kgWachter
32
72 kgPettiti
33
71 kgMühlberger
39
64 kgScott
40
68 kgLawless
43
72 kgLampier
50
68 kgMcconvey
51
67 kgBiałobłocki
57
79 kgDibben
63
78 kgArchbold
76
79 kgMackinnon
83
75 kgTedeschi
92
69 kgSchreurs
149
69 kg
2
56 kgWood
3
72 kgDoull
10
71 kgBallerini
11
71 kgEibegger
14
68 kgOckeloen
25
66 kgPeters
27
67 kgBevin
29
75 kgWachter
32
72 kgPettiti
33
71 kgMühlberger
39
64 kgScott
40
68 kgLawless
43
72 kgLampier
50
68 kgMcconvey
51
67 kgBiałobłocki
57
79 kgDibben
63
78 kgArchbold
76
79 kgMackinnon
83
75 kgTedeschi
92
69 kgSchreurs
149
69 kg
Weight (KG) →
Result →
79
56
2
149
# | Rider | Weight (KG) |
---|---|---|
2 | PICHETTA Ricardo | 56 |
3 | WOOD Oliver | 72 |
10 | DOULL Owain | 71 |
11 | BALLERINI Davide | 71 |
14 | EIBEGGER Markus | 68 |
25 | OCKELOEN Jasper | 66 |
27 | PETERS Alex | 67 |
29 | BEVIN Patrick | 75 |
32 | WACHTER Alexander | 72 |
33 | PETTITI Alessandro | 71 |
39 | MÜHLBERGER Gregor | 64 |
40 | SCOTT Jacob | 68 |
43 | LAWLESS Chris | 72 |
50 | LAMPIER Steven | 68 |
51 | MCCONVEY Connor | 67 |
57 | BIAŁOBŁOCKI Marcin | 79 |
63 | DIBBEN Jonathan | 78 |
76 | ARCHBOLD Shane | 79 |
83 | MACKINNON Sean | 75 |
92 | TEDESCHI Mirko | 69 |
149 | SCHREURS Hamish | 69 |