Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 97
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Bevin
1
75 kgBiałobłocki
2
79 kgEibegger
5
68 kgDoull
6
71 kgBallerini
8
71 kgOckeloen
9
66 kgLampier
13
68 kgPeters
20
67 kgMühlberger
22
64 kgPettiti
26
71 kgPichetta
31
56 kgTedeschi
33
69 kgMackinnon
37
75 kgScott
62
68 kgWachter
63
72 kgDibben
67
78 kgMcconvey
73
67 kgWood
102
72 kgLawless
105
72 kgSchreurs
116
69 kgArchbold
148
79 kg
1
75 kgBiałobłocki
2
79 kgEibegger
5
68 kgDoull
6
71 kgBallerini
8
71 kgOckeloen
9
66 kgLampier
13
68 kgPeters
20
67 kgMühlberger
22
64 kgPettiti
26
71 kgPichetta
31
56 kgTedeschi
33
69 kgMackinnon
37
75 kgScott
62
68 kgWachter
63
72 kgDibben
67
78 kgMcconvey
73
67 kgWood
102
72 kgLawless
105
72 kgSchreurs
116
69 kgArchbold
148
79 kg
Weight (KG) →
Result →
79
56
1
148
# | Rider | Weight (KG) |
---|---|---|
1 | BEVIN Patrick | 75 |
2 | BIAŁOBŁOCKI Marcin | 79 |
5 | EIBEGGER Markus | 68 |
6 | DOULL Owain | 71 |
8 | BALLERINI Davide | 71 |
9 | OCKELOEN Jasper | 66 |
13 | LAMPIER Steven | 68 |
20 | PETERS Alex | 67 |
22 | MÜHLBERGER Gregor | 64 |
26 | PETTITI Alessandro | 71 |
31 | PICHETTA Ricardo | 56 |
33 | TEDESCHI Mirko | 69 |
37 | MACKINNON Sean | 75 |
62 | SCOTT Jacob | 68 |
63 | WACHTER Alexander | 72 |
67 | DIBBEN Jonathan | 78 |
73 | MCCONVEY Connor | 67 |
102 | WOOD Oliver | 72 |
105 | LAWLESS Chris | 72 |
116 | SCHREURS Hamish | 69 |
148 | ARCHBOLD Shane | 79 |