Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 106
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Białobłocki
1
79 kgTedeschi
6
69 kgPeters
9
67 kgPichetta
10
56 kgWachter
11
72 kgBallerini
15
71 kgLampier
21
68 kgPettiti
24
71 kgScott
32
68 kgOckeloen
37
66 kgBevin
40
75 kgMühlberger
43
64 kgMackinnon
55
75 kgMcconvey
58
67 kgDibben
59
78 kgDoull
64
71 kgEibegger
68
68 kgLawless
106
72 kgWood
129
72 kgSchreurs
130
69 kgArchbold
132
79 kg
1
79 kgTedeschi
6
69 kgPeters
9
67 kgPichetta
10
56 kgWachter
11
72 kgBallerini
15
71 kgLampier
21
68 kgPettiti
24
71 kgScott
32
68 kgOckeloen
37
66 kgBevin
40
75 kgMühlberger
43
64 kgMackinnon
55
75 kgMcconvey
58
67 kgDibben
59
78 kgDoull
64
71 kgEibegger
68
68 kgLawless
106
72 kgWood
129
72 kgSchreurs
130
69 kgArchbold
132
79 kg
Weight (KG) →
Result →
79
56
1
132
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
6 | TEDESCHI Mirko | 69 |
9 | PETERS Alex | 67 |
10 | PICHETTA Ricardo | 56 |
11 | WACHTER Alexander | 72 |
15 | BALLERINI Davide | 71 |
21 | LAMPIER Steven | 68 |
24 | PETTITI Alessandro | 71 |
32 | SCOTT Jacob | 68 |
37 | OCKELOEN Jasper | 66 |
40 | BEVIN Patrick | 75 |
43 | MÜHLBERGER Gregor | 64 |
55 | MACKINNON Sean | 75 |
58 | MCCONVEY Connor | 67 |
59 | DIBBEN Jonathan | 78 |
64 | DOULL Owain | 71 |
68 | EIBEGGER Markus | 68 |
106 | LAWLESS Chris | 72 |
129 | WOOD Oliver | 72 |
130 | SCHREURS Hamish | 69 |
132 | ARCHBOLD Shane | 79 |