Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Schreurs
2
69 kgBallerini
4
71 kgArchbold
5
79 kgEibegger
6
68 kgBevin
8
75 kgBiałobłocki
9
79 kgDibben
12
78 kgOckeloen
13
66 kgScott
15
68 kgPeters
23
67 kgMühlberger
24
64 kgPichetta
28
56 kgTedeschi
31
69 kgWachter
33
72 kgMcconvey
43
67 kgMackinnon
51
75 kgPettiti
92
71 kgDoull
97
71 kg
2
69 kgBallerini
4
71 kgArchbold
5
79 kgEibegger
6
68 kgBevin
8
75 kgBiałobłocki
9
79 kgDibben
12
78 kgOckeloen
13
66 kgScott
15
68 kgPeters
23
67 kgMühlberger
24
64 kgPichetta
28
56 kgTedeschi
31
69 kgWachter
33
72 kgMcconvey
43
67 kgMackinnon
51
75 kgPettiti
92
71 kgDoull
97
71 kg
Weight (KG) →
Result →
79
56
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | SCHREURS Hamish | 69 |
4 | BALLERINI Davide | 71 |
5 | ARCHBOLD Shane | 79 |
6 | EIBEGGER Markus | 68 |
8 | BEVIN Patrick | 75 |
9 | BIAŁOBŁOCKI Marcin | 79 |
12 | DIBBEN Jonathan | 78 |
13 | OCKELOEN Jasper | 66 |
15 | SCOTT Jacob | 68 |
23 | PETERS Alex | 67 |
24 | MÜHLBERGER Gregor | 64 |
28 | PICHETTA Ricardo | 56 |
31 | TEDESCHI Mirko | 69 |
33 | WACHTER Alexander | 72 |
43 | MCCONVEY Connor | 67 |
51 | MACKINNON Sean | 75 |
92 | PETTITI Alessandro | 71 |
97 | DOULL Owain | 71 |