Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ballerini
1
71 kgBiałobłocki
4
79 kgDoull
6
71 kgDibben
8
78 kgPettiti
9
71 kgPeters
10
67 kgBevin
12
75 kgOckeloen
15
66 kgMühlberger
20
64 kgPichetta
26
56 kgTedeschi
32
69 kgScott
45
68 kgMackinnon
49
75 kgWachter
66
72 kgMcconvey
88
67 kgEibegger
89
68 kgArchbold
90
79 kgSchreurs
94
69 kg
1
71 kgBiałobłocki
4
79 kgDoull
6
71 kgDibben
8
78 kgPettiti
9
71 kgPeters
10
67 kgBevin
12
75 kgOckeloen
15
66 kgMühlberger
20
64 kgPichetta
26
56 kgTedeschi
32
69 kgScott
45
68 kgMackinnon
49
75 kgWachter
66
72 kgMcconvey
88
67 kgEibegger
89
68 kgArchbold
90
79 kgSchreurs
94
69 kg
Weight (KG) →
Result →
79
56
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | BALLERINI Davide | 71 |
4 | BIAŁOBŁOCKI Marcin | 79 |
6 | DOULL Owain | 71 |
8 | DIBBEN Jonathan | 78 |
9 | PETTITI Alessandro | 71 |
10 | PETERS Alex | 67 |
12 | BEVIN Patrick | 75 |
15 | OCKELOEN Jasper | 66 |
20 | MÜHLBERGER Gregor | 64 |
26 | PICHETTA Ricardo | 56 |
32 | TEDESCHI Mirko | 69 |
45 | SCOTT Jacob | 68 |
49 | MACKINNON Sean | 75 |
66 | WACHTER Alexander | 72 |
88 | MCCONVEY Connor | 67 |
89 | EIBEGGER Markus | 68 |
90 | ARCHBOLD Shane | 79 |
94 | SCHREURS Hamish | 69 |