Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Gate
1
71 kgPöstlberger
2
70 kgde Man
3
68 kgViganò
5
67 kgTizza
6
58 kgIrvine
7
80 kgMalucelli
9
68 kgKruopis
10
80 kgEdmondson
11
62 kgMullen
15
77 kgLaverack
19
62 kgGesbert
20
63 kgBenetseder
23
65 kgDunne
25
88 kgMackinnon
26
75 kgSchönberger
30
64 kgJourniaux
31
63 kgSleurs
32
68 kgJanssens
33
74 kg
1
71 kgPöstlberger
2
70 kgde Man
3
68 kgViganò
5
67 kgTizza
6
58 kgIrvine
7
80 kgMalucelli
9
68 kgKruopis
10
80 kgEdmondson
11
62 kgMullen
15
77 kgLaverack
19
62 kgGesbert
20
63 kgBenetseder
23
65 kgDunne
25
88 kgMackinnon
26
75 kgSchönberger
30
64 kgJourniaux
31
63 kgSleurs
32
68 kgJanssens
33
74 kg
Weight (KG) →
Result →
88
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | GATE Aaron | 71 |
2 | PÖSTLBERGER Lukas | 70 |
3 | DE MAN Jaap | 68 |
5 | VIGANÒ Davide | 67 |
6 | TIZZA Marco | 58 |
7 | IRVINE Martyn | 80 |
9 | MALUCELLI Matteo | 68 |
10 | KRUOPIS Aidis | 80 |
11 | EDMONDSON Joshua | 62 |
15 | MULLEN Ryan | 77 |
19 | LAVERACK Edward | 62 |
20 | GESBERT Élie | 63 |
23 | BENETSEDER Josef | 65 |
25 | DUNNE Conor | 88 |
26 | MACKINNON Sean | 75 |
30 | SCHÖNBERGER Sebastian | 64 |
31 | JOURNIAUX Axel | 63 |
32 | SLEURS Christophe | 68 |
33 | JANSSENS Jimmy | 74 |