Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Gate
1
71 kgvan der Hoorn
5
73 kgHoller
6
58 kgDonohoe
9
62 kgHindley
10
60 kgGullen
11
65 kgEdmondson
13
62 kgDunbar
15
57 kgDunne
16
88 kgKennett
17
75 kgVereecken
20
72 kgHamilton
22
71 kgLaverack
24
62 kgDowney
27
74 kgWachter
29
72 kgVinther
31
68 kgde Greef
33
65 kgHolmes
34
67 kg
1
71 kgvan der Hoorn
5
73 kgHoller
6
58 kgDonohoe
9
62 kgHindley
10
60 kgGullen
11
65 kgEdmondson
13
62 kgDunbar
15
57 kgDunne
16
88 kgKennett
17
75 kgVereecken
20
72 kgHamilton
22
71 kgLaverack
24
62 kgDowney
27
74 kgWachter
29
72 kgVinther
31
68 kgde Greef
33
65 kgHolmes
34
67 kg
Weight (KG) →
Result →
88
57
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | GATE Aaron | 71 |
5 | VAN DER HOORN Taco | 73 |
6 | HOLLER Nikodemus | 58 |
9 | DONOHOE Alistair | 62 |
10 | HINDLEY Jai | 60 |
11 | GULLEN James | 65 |
13 | EDMONDSON Joshua | 62 |
15 | DUNBAR Eddie | 57 |
16 | DUNNE Conor | 88 |
17 | KENNETT Dylan | 75 |
20 | VEREECKEN Nicolas | 72 |
22 | HAMILTON Lucas | 71 |
24 | LAVERACK Edward | 62 |
27 | DOWNEY Mark | 74 |
29 | WACHTER Alexander | 72 |
31 | VINTHER Troels Rønning | 68 |
33 | DE GREEF Robbert | 65 |
34 | HOLMES Matthew | 67 |