Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Gate
1
71 kgDonohoe
4
62 kgvan der Hoorn
5
73 kgHoller
8
58 kgDunne
9
88 kgHolmes
10
67 kgEdmondson
13
62 kgMol
14
83 kgVinther
15
68 kgHindley
16
60 kgGullen
17
65 kgDunbar
19
57 kgDowney
20
74 kgVereecken
21
72 kgKennett
24
75 kgGough
25
71 kgHamilton
28
71 kgLaverack
31
62 kgDawson
35
73 kgWachter
37
72 kgde Greef
42
65 kgTeggart
43
63 kg
1
71 kgDonohoe
4
62 kgvan der Hoorn
5
73 kgHoller
8
58 kgDunne
9
88 kgHolmes
10
67 kgEdmondson
13
62 kgMol
14
83 kgVinther
15
68 kgHindley
16
60 kgGullen
17
65 kgDunbar
19
57 kgDowney
20
74 kgVereecken
21
72 kgKennett
24
75 kgGough
25
71 kgHamilton
28
71 kgLaverack
31
62 kgDawson
35
73 kgWachter
37
72 kgde Greef
42
65 kgTeggart
43
63 kg
Weight (KG) →
Result →
88
57
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | GATE Aaron | 71 |
4 | DONOHOE Alistair | 62 |
5 | VAN DER HOORN Taco | 73 |
8 | HOLLER Nikodemus | 58 |
9 | DUNNE Conor | 88 |
10 | HOLMES Matthew | 67 |
13 | EDMONDSON Joshua | 62 |
14 | MOL Wouter | 83 |
15 | VINTHER Troels Rønning | 68 |
16 | HINDLEY Jai | 60 |
17 | GULLEN James | 65 |
19 | DUNBAR Eddie | 57 |
20 | DOWNEY Mark | 74 |
21 | VEREECKEN Nicolas | 72 |
24 | KENNETT Dylan | 75 |
25 | GOUGH Regan | 71 |
28 | HAMILTON Lucas | 71 |
31 | LAVERACK Edward | 62 |
35 | DAWSON Christopher | 73 |
37 | WACHTER Alexander | 72 |
42 | DE GREEF Robbert | 65 |
43 | TEGGART Matthew | 63 |