Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Bakker
1
74.5 kgLatham
2
81 kgPoulhiès
3
75 kgvan Schip
4
84 kgYssaad
8
69 kgTennant
10
82 kgTeggart
11
63 kgWeemaes
12
73 kgKasperkiewicz
13
71 kgAaen Jørgensen
15
63 kgO'Mahony
17
69 kgMeijers
18
70 kgGroen
20
70.5 kgVinther
24
68 kgGullen
25
65 kgRučigaj
26
68 kgGranigan
27
76 kgMulhern
28
75 kgWelsford
29
79 kgJerman
31
67 kg
1
74.5 kgLatham
2
81 kgPoulhiès
3
75 kgvan Schip
4
84 kgYssaad
8
69 kgTennant
10
82 kgTeggart
11
63 kgWeemaes
12
73 kgKasperkiewicz
13
71 kgAaen Jørgensen
15
63 kgO'Mahony
17
69 kgMeijers
18
70 kgGroen
20
70.5 kgVinther
24
68 kgGullen
25
65 kgRučigaj
26
68 kgGranigan
27
76 kgMulhern
28
75 kgWelsford
29
79 kgJerman
31
67 kg
Weight (KG) →
Result →
84
63
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | BAKKER Dennis | 74.5 |
2 | LATHAM Christopher | 81 |
3 | POULHIÈS Stéphane | 75 |
4 | VAN SCHIP Jan-Willem | 84 |
8 | YSSAAD Yannis | 69 |
10 | TENNANT Andrew | 82 |
11 | TEGGART Matthew | 63 |
12 | WEEMAES Sasha | 73 |
13 | KASPERKIEWICZ Przemysław | 71 |
15 | AAEN JØRGENSEN Jonas | 63 |
17 | O'MAHONY Darragh | 69 |
18 | MEIJERS Daan | 70 |
20 | GROEN Ike | 70.5 |
24 | VINTHER Troels Rønning | 68 |
25 | GULLEN James | 65 |
26 | RUČIGAJ Žiga | 68 |
27 | GRANIGAN Noah | 76 |
28 | MULHERN Mitchell | 75 |
29 | WELSFORD Sam | 79 |
31 | JERMAN Žiga | 67 |