Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bugter
1
81 kgGhys
2
72 kgVan Dalen
3
70 kgThièry
6
67 kgRathe
7
74 kgHoller
9
58 kgImhof
10
80 kgBax
15
78 kgDowning
18
64 kgStedman
19
54 kgCastillo
21
72 kgMcDunphy
22
70 kgTulner
23
62 kgDe Ketele
27
66 kgBichlmann
28
72 kgTownsend
29
73 kgLizde
30
70 kgRüegg
31
66 kgRyan
35
70 kgJanssen
38
76 kgRoberts
39
69 kg
1
81 kgGhys
2
72 kgVan Dalen
3
70 kgThièry
6
67 kgRathe
7
74 kgHoller
9
58 kgImhof
10
80 kgBax
15
78 kgDowning
18
64 kgStedman
19
54 kgCastillo
21
72 kgMcDunphy
22
70 kgTulner
23
62 kgDe Ketele
27
66 kgBichlmann
28
72 kgTownsend
29
73 kgLizde
30
70 kgRüegg
31
66 kgRyan
35
70 kgJanssen
38
76 kgRoberts
39
69 kg
Weight (KG) →
Result →
81
54
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | BUGTER Luuc | 81 |
2 | GHYS Robbe | 72 |
3 | VAN DALEN Jason | 70 |
6 | THIÈRY Cyrille | 67 |
7 | RATHE Jacob | 74 |
9 | HOLLER Nikodemus | 58 |
10 | IMHOF Claudio | 80 |
15 | BAX Sjoerd | 78 |
18 | DOWNING Russell | 64 |
19 | STEDMAN Maximilian | 54 |
21 | CASTILLO Ulises Alfredo | 72 |
22 | MCDUNPHY Conn | 70 |
23 | TULNER Rens | 62 |
27 | DE KETELE Kenny | 66 |
28 | BICHLMANN Daniel | 72 |
29 | TOWNSEND Rory | 73 |
30 | LIZDE Seid | 70 |
31 | RÜEGG Lukas | 66 |
35 | RYAN Fintan | 70 |
38 | JANSSEN Adriaan | 76 |
39 | ROBERTS William | 69 |