Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Imhof
2
80 kgBugter
3
81 kgTulner
4
62 kgBichlmann
7
72 kgVan Dalen
8
70 kgLizde
9
70 kgGhys
11
72 kgCastillo
13
72 kgHoller
15
58 kgStedman
17
54 kgMcDunphy
20
70 kgRoberts
21
69 kgThièry
23
67 kgRyan
26
70 kgRüegg
34
66 kgBax
35
78 kgJanssen
39
76 kgDe Ketele
42
66 kgDaly
47
78 kgRathe
50
74 kgDowning
56
64 kgvan Engelen
57
51 kgTownsend
100
73 kgWhite
124
70 kg
2
80 kgBugter
3
81 kgTulner
4
62 kgBichlmann
7
72 kgVan Dalen
8
70 kgLizde
9
70 kgGhys
11
72 kgCastillo
13
72 kgHoller
15
58 kgStedman
17
54 kgMcDunphy
20
70 kgRoberts
21
69 kgThièry
23
67 kgRyan
26
70 kgRüegg
34
66 kgBax
35
78 kgJanssen
39
76 kgDe Ketele
42
66 kgDaly
47
78 kgRathe
50
74 kgDowning
56
64 kgvan Engelen
57
51 kgTownsend
100
73 kgWhite
124
70 kg
Weight (KG) →
Result →
81
51
2
124
# | Rider | Weight (KG) |
---|---|---|
2 | IMHOF Claudio | 80 |
3 | BUGTER Luuc | 81 |
4 | TULNER Rens | 62 |
7 | BICHLMANN Daniel | 72 |
8 | VAN DALEN Jason | 70 |
9 | LIZDE Seid | 70 |
11 | GHYS Robbe | 72 |
13 | CASTILLO Ulises Alfredo | 72 |
15 | HOLLER Nikodemus | 58 |
17 | STEDMAN Maximilian | 54 |
20 | MCDUNPHY Conn | 70 |
21 | ROBERTS William | 69 |
23 | THIÈRY Cyrille | 67 |
26 | RYAN Fintan | 70 |
34 | RÜEGG Lukas | 66 |
35 | BAX Sjoerd | 78 |
39 | JANSSEN Adriaan | 76 |
42 | DE KETELE Kenny | 66 |
47 | DALY Cormac | 78 |
50 | RATHE Jacob | 74 |
56 | DOWNING Russell | 64 |
57 | VAN ENGELEN Adne | 51 |
100 | TOWNSEND Rory | 73 |
124 | WHITE Curtis | 70 |