Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bugter
1
81 kgVan Dalen
2
70 kgGhys
3
72 kgThièry
5
67 kgRathe
7
74 kgImhof
9
80 kgHoller
11
58 kgDowning
15
64 kgCastillo
17
72 kgTulner
19
62 kgBichlmann
24
72 kgTownsend
25
73 kgLizde
26
70 kgRüegg
27
66 kgMcDunphy
28
70 kgDe Ketele
30
66 kgStedman
31
54 kgRyan
34
70 kgBax
37
78 kgJanssen
38
76 kg
1
81 kgVan Dalen
2
70 kgGhys
3
72 kgThièry
5
67 kgRathe
7
74 kgImhof
9
80 kgHoller
11
58 kgDowning
15
64 kgCastillo
17
72 kgTulner
19
62 kgBichlmann
24
72 kgTownsend
25
73 kgLizde
26
70 kgRüegg
27
66 kgMcDunphy
28
70 kgDe Ketele
30
66 kgStedman
31
54 kgRyan
34
70 kgBax
37
78 kgJanssen
38
76 kg
Weight (KG) →
Result →
81
54
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | BUGTER Luuc | 81 |
2 | VAN DALEN Jason | 70 |
3 | GHYS Robbe | 72 |
5 | THIÈRY Cyrille | 67 |
7 | RATHE Jacob | 74 |
9 | IMHOF Claudio | 80 |
11 | HOLLER Nikodemus | 58 |
15 | DOWNING Russell | 64 |
17 | CASTILLO Ulises Alfredo | 72 |
19 | TULNER Rens | 62 |
24 | BICHLMANN Daniel | 72 |
25 | TOWNSEND Rory | 73 |
26 | LIZDE Seid | 70 |
27 | RÜEGG Lukas | 66 |
28 | MCDUNPHY Conn | 70 |
30 | DE KETELE Kenny | 66 |
31 | STEDMAN Maximilian | 54 |
34 | RYAN Fintan | 70 |
37 | BAX Sjoerd | 78 |
38 | JANSSEN Adriaan | 76 |