Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ghys
2
72 kgRathe
3
74 kgVan Dalen
4
70 kgBugter
5
81 kgThièry
7
67 kgMcDunphy
8
70 kgDe Ketele
9
66 kgHoller
10
58 kgBax
13
78 kgJanssen
14
76 kgRüegg
15
66 kgTulner
18
62 kgBichlmann
20
72 kgStedman
25
54 kgDowning
27
64 kgTownsend
42
73 kgDaly
44
78 kgCastillo
49
72 kgvan Engelen
50
51 kgImhof
52
80 kgLizde
57
70 kgWhite
65
70 kgRoberts
68
69 kgRyan
93
70 kg
2
72 kgRathe
3
74 kgVan Dalen
4
70 kgBugter
5
81 kgThièry
7
67 kgMcDunphy
8
70 kgDe Ketele
9
66 kgHoller
10
58 kgBax
13
78 kgJanssen
14
76 kgRüegg
15
66 kgTulner
18
62 kgBichlmann
20
72 kgStedman
25
54 kgDowning
27
64 kgTownsend
42
73 kgDaly
44
78 kgCastillo
49
72 kgvan Engelen
50
51 kgImhof
52
80 kgLizde
57
70 kgWhite
65
70 kgRoberts
68
69 kgRyan
93
70 kg
Weight (KG) →
Result →
81
51
2
93
# | Rider | Weight (KG) |
---|---|---|
2 | GHYS Robbe | 72 |
3 | RATHE Jacob | 74 |
4 | VAN DALEN Jason | 70 |
5 | BUGTER Luuc | 81 |
7 | THIÈRY Cyrille | 67 |
8 | MCDUNPHY Conn | 70 |
9 | DE KETELE Kenny | 66 |
10 | HOLLER Nikodemus | 58 |
13 | BAX Sjoerd | 78 |
14 | JANSSEN Adriaan | 76 |
15 | RÜEGG Lukas | 66 |
18 | TULNER Rens | 62 |
20 | BICHLMANN Daniel | 72 |
25 | STEDMAN Maximilian | 54 |
27 | DOWNING Russell | 64 |
42 | TOWNSEND Rory | 73 |
44 | DALY Cormac | 78 |
49 | CASTILLO Ulises Alfredo | 72 |
50 | VAN ENGELEN Adne | 51 |
52 | IMHOF Claudio | 80 |
57 | LIZDE Seid | 70 |
65 | WHITE Curtis | 70 |
68 | ROBERTS William | 69 |
93 | RYAN Fintan | 70 |