Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Ghys
1
72 kgBugter
2
81 kgBax
3
78 kgVan Dalen
5
70 kgStedman
9
54 kgHoller
11
58 kgMcDunphy
12
70 kgDe Ketele
13
66 kgRoberts
14
69 kgThièry
15
67 kgJanssen
18
76 kgRathe
21
74 kgDaly
22
78 kgTulner
23
62 kgRüegg
27
66 kgTownsend
38
73 kgDowning
41
64 kgRyan
42
70 kgBichlmann
50
72 kgWhite
59
70 kgCastillo
91
72 kgImhof
97
80 kgLizde
100
70 kgvan Engelen
120
51 kg
1
72 kgBugter
2
81 kgBax
3
78 kgVan Dalen
5
70 kgStedman
9
54 kgHoller
11
58 kgMcDunphy
12
70 kgDe Ketele
13
66 kgRoberts
14
69 kgThièry
15
67 kgJanssen
18
76 kgRathe
21
74 kgDaly
22
78 kgTulner
23
62 kgRüegg
27
66 kgTownsend
38
73 kgDowning
41
64 kgRyan
42
70 kgBichlmann
50
72 kgWhite
59
70 kgCastillo
91
72 kgImhof
97
80 kgLizde
100
70 kgvan Engelen
120
51 kg
Weight (KG) →
Result →
81
51
1
120
# | Rider | Weight (KG) |
---|---|---|
1 | GHYS Robbe | 72 |
2 | BUGTER Luuc | 81 |
3 | BAX Sjoerd | 78 |
5 | VAN DALEN Jason | 70 |
9 | STEDMAN Maximilian | 54 |
11 | HOLLER Nikodemus | 58 |
12 | MCDUNPHY Conn | 70 |
13 | DE KETELE Kenny | 66 |
14 | ROBERTS William | 69 |
15 | THIÈRY Cyrille | 67 |
18 | JANSSEN Adriaan | 76 |
21 | RATHE Jacob | 74 |
22 | DALY Cormac | 78 |
23 | TULNER Rens | 62 |
27 | RÜEGG Lukas | 66 |
38 | TOWNSEND Rory | 73 |
41 | DOWNING Russell | 64 |
42 | RYAN Fintan | 70 |
50 | BICHLMANN Daniel | 72 |
59 | WHITE Curtis | 70 |
91 | CASTILLO Ulises Alfredo | 72 |
97 | IMHOF Claudio | 80 |
100 | LIZDE Seid | 70 |
120 | VAN ENGELEN Adne | 51 |