Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Matveyev
1
78 kgGrivko
2
70 kgVisconti
3
63 kgPinotti
4
67 kgKvachuk
5
68 kgPeron
6
70 kgSijmens
7
69 kgNibali
8
65 kgBertogliati
10
73 kgBelohvoščiks
11
70 kgNiemiec
12
62 kgMonfort
14
66 kgGasparotto
15
65 kgZanini
16
80 kgSzmyd
17
60 kgKuschynski
18
65 kgAndriotto
19
68 kgNocentini
21
60 kgDi Luca
23
61 kgFerrara
26
60 kg
1
78 kgGrivko
2
70 kgVisconti
3
63 kgPinotti
4
67 kgKvachuk
5
68 kgPeron
6
70 kgSijmens
7
69 kgNibali
8
65 kgBertogliati
10
73 kgBelohvoščiks
11
70 kgNiemiec
12
62 kgMonfort
14
66 kgGasparotto
15
65 kgZanini
16
80 kgSzmyd
17
60 kgKuschynski
18
65 kgAndriotto
19
68 kgNocentini
21
60 kgDi Luca
23
61 kgFerrara
26
60 kg
Weight (KG) →
Result →
80
60
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | MATVEYEV Sergiy | 78 |
2 | GRIVKO Andrey | 70 |
3 | VISCONTI Giovanni | 63 |
4 | PINOTTI Marco | 67 |
5 | KVACHUK Oleksandr | 68 |
6 | PERON Andrea | 70 |
7 | SIJMENS Nico | 69 |
8 | NIBALI Vincenzo | 65 |
10 | BERTOGLIATI Rubens | 73 |
11 | BELOHVOŠČIKS Raivis | 70 |
12 | NIEMIEC Przemysław | 62 |
14 | MONFORT Maxime | 66 |
15 | GASPAROTTO Enrico | 65 |
16 | ZANINI Stefano | 80 |
17 | SZMYD Sylwester | 60 |
18 | KUSCHYNSKI Aleksandr | 65 |
19 | ANDRIOTTO Dario | 68 |
21 | NOCENTINI Rinaldo | 60 |
23 | DI LUCA Danilo | 61 |
26 | FERRARA Raffaele | 60 |