Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Serebryakov
1
70 kgJanorschke
2
78 kgShpilevsky
3
78 kgTsatevich
4
64 kgSchröder
6
64 kgBēcis
7
82 kgNikolaev
9
66 kgStević
13
66 kgVasylyuk
22
65 kgFirsanov
25
58 kgTleubayev
39
70 kgPrevar
43
64 kgSolomennikov
44
72 kgKochetkov
50
70 kgFlaksis
72
79 kgBoev
73
74 kgJovanović
78
60 kgTopchanyuk
81
65 kgVasilyev
109
70 kg
1
70 kgJanorschke
2
78 kgShpilevsky
3
78 kgTsatevich
4
64 kgSchröder
6
64 kgBēcis
7
82 kgNikolaev
9
66 kgStević
13
66 kgVasylyuk
22
65 kgFirsanov
25
58 kgTleubayev
39
70 kgPrevar
43
64 kgSolomennikov
44
72 kgKochetkov
50
70 kgFlaksis
72
79 kgBoev
73
74 kgJovanović
78
60 kgTopchanyuk
81
65 kgVasilyev
109
70 kg
Weight (KG) →
Result →
82
58
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | SEREBRYAKOV Alexander | 70 |
2 | JANORSCHKE Grischa | 78 |
3 | SHPILEVSKY Boris | 78 |
4 | TSATEVICH Alexey | 64 |
6 | SCHRÖDER Björn | 64 |
7 | BĒCIS Armands | 82 |
9 | NIKOLAEV Sergey | 66 |
13 | STEVIĆ Ivan | 66 |
22 | VASYLYUK Andriy | 65 |
25 | FIRSANOV Sergey | 58 |
39 | TLEUBAYEV Ruslan | 70 |
43 | PREVAR Oleksandr | 64 |
44 | SOLOMENNIKOV Andrei | 72 |
50 | KOCHETKOV Pavel | 70 |
72 | FLAKSIS Andžs | 79 |
73 | BOEV Igor | 74 |
78 | JOVANOVIĆ Nebojša | 60 |
81 | TOPCHANYUK Artem | 65 |
109 | VASILYEV Maksym | 70 |