Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Papok
2
76 kgLagutin
3
68 kgBoev
5
74 kgSolomennikov
8
72 kgBalykin
9
68 kgNikolaev
12
66 kgTamouridis
13
70 kgBogdanovičs
14
68 kgManakov
15
77 kgMaikin
16
68 kgBouglas
21
71 kgKlimov
22
69 kgVasilyev
24
70 kgShushemoin
25
62 kgZubov
27
72 kgStash
29
77 kgNych
30
74 kg
2
76 kgLagutin
3
68 kgBoev
5
74 kgSolomennikov
8
72 kgBalykin
9
68 kgNikolaev
12
66 kgTamouridis
13
70 kgBogdanovičs
14
68 kgManakov
15
77 kgMaikin
16
68 kgBouglas
21
71 kgKlimov
22
69 kgVasilyev
24
70 kgShushemoin
25
62 kgZubov
27
72 kgStash
29
77 kgNych
30
74 kg
Weight (KG) →
Result →
77
62
2
30
# | Rider | Weight (KG) |
---|---|---|
2 | PAPOK Siarhei | 76 |
3 | LAGUTIN Sergey | 68 |
5 | BOEV Igor | 74 |
8 | SOLOMENNIKOV Andrei | 72 |
9 | BALYKIN Ivan | 68 |
12 | NIKOLAEV Sergey | 66 |
13 | TAMOURIDIS Ioannis | 70 |
14 | BOGDANOVIČS Māris | 68 |
15 | MANAKOV Victor | 77 |
16 | MAIKIN Roman | 68 |
21 | BOUGLAS Georgios | 71 |
22 | KLIMOV Sergey | 69 |
24 | VASILYEV Maksym | 70 |
25 | SHUSHEMOIN Alexandr | 62 |
27 | ZUBOV Matvey | 72 |
29 | STASH Mamyr | 77 |
30 | NYCH Artem | 74 |