Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Pozdnyakov
1
67 kgVorganov
4
65 kgErshov
6
70 kgManakov
7
77 kgKaraliok
8
75 kgRamanau
9
68 kgAkhramenka
11
78 kgBazhkou
15
65 kgVorobyev
19
74 kgFatkullin
24
62 kgAnsons
25
77 kgSamoilau
31
77 kgJabrayilov
35
52 kgStash
38
77 kgDubovski
40
75 kgRostovtsev
43
73 kgZhurkin
44
77 kgKomin
56
63 kgSergis
61
75 kgMikayilzade
62
66 kgKers
63
71 kgYogev
64
78 kgAhiyevich
65
70 kg
1
67 kgVorganov
4
65 kgErshov
6
70 kgManakov
7
77 kgKaraliok
8
75 kgRamanau
9
68 kgAkhramenka
11
78 kgBazhkou
15
65 kgVorobyev
19
74 kgFatkullin
24
62 kgAnsons
25
77 kgSamoilau
31
77 kgJabrayilov
35
52 kgStash
38
77 kgDubovski
40
75 kgRostovtsev
43
73 kgZhurkin
44
77 kgKomin
56
63 kgSergis
61
75 kgMikayilzade
62
66 kgKers
63
71 kgYogev
64
78 kgAhiyevich
65
70 kg
Weight (KG) →
Result →
78
52
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | POZDNYAKOV Kirill | 67 |
4 | VORGANOV Eduard | 65 |
6 | ERSHOV Artur | 70 |
7 | MANAKOV Victor | 77 |
8 | KARALIOK Yauheni | 75 |
9 | RAMANAU Raman | 68 |
11 | AKHRAMENKA Yauheni | 78 |
15 | BAZHKOU Stanislau | 65 |
19 | VOROBYEV Anton | 74 |
24 | FATKULLIN Valerii | 62 |
25 | ANSONS Kristers | 77 |
31 | SAMOILAU Branislau | 77 |
35 | JABRAYILOV Samir | 52 |
38 | STASH Mamyr | 77 |
40 | DUBOVSKI Vladzislau | 75 |
43 | ROSTOVTSEV Sergey | 73 |
44 | ZHURKIN Nikolay | 77 |
56 | KOMIN Aleksandr | 63 |
61 | SERGIS Kaspars | 75 |
62 | MIKAYILZADE Musa | 66 |
63 | KERS Koos Jeroen | 71 |
64 | YOGEV Alon | 78 |
65 | AHIYEVICH Aleh | 70 |