Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
van Dijke
1
74 kgPickrell
3
72 kgKrul
4
75 kgHoole
6
81 kgVandepitte
7
80 kgvan Dijke
8
74 kgDrizners
9
70 kgPollefliet
10
74 kgFrigo
11
70 kgVangheluwe
12
79 kgBroex
13
75 kgVan Hemelen
14
71 kgBoven
15
62 kgKaesemans
16
66 kgMarsman
17
75 kgDauphin
21
70 kgKurits
22
74 kgLange
26
72 kg
1
74 kgPickrell
3
72 kgKrul
4
75 kgHoole
6
81 kgVandepitte
7
80 kgvan Dijke
8
74 kgDrizners
9
70 kgPollefliet
10
74 kgFrigo
11
70 kgVangheluwe
12
79 kgBroex
13
75 kgVan Hemelen
14
71 kgBoven
15
62 kgKaesemans
16
66 kgMarsman
17
75 kgDauphin
21
70 kgKurits
22
74 kgLange
26
72 kg
Weight (KG) →
Result →
81
62
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJKE Mick | 74 |
3 | PICKRELL Riley | 72 |
4 | KRUL Wessel | 75 |
6 | HOOLE Daan | 81 |
7 | VANDEPITTE Nathan | 80 |
8 | VAN DIJKE Tim | 74 |
9 | DRIZNERS Jarrad | 70 |
10 | POLLEFLIET Gianluca | 74 |
11 | FRIGO Marco | 70 |
12 | VANGHELUWE Warre | 79 |
13 | BROEX Victor | 75 |
14 | VAN HEMELEN Vincent | 71 |
15 | BOVEN Lars | 62 |
16 | KAESEMANS Jasper | 66 |
17 | MARSMAN Tim | 75 |
21 | DAUPHIN Florian | 70 |
22 | KURITS Joonas | 74 |
26 | LANGE Colby | 72 |