Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
van Dijke
1
74 kgvan Dijke
3
74 kgPickrell
4
72 kgHoole
5
81 kgKrul
6
75 kgVan Hemelen
8
71 kgDrizners
9
70 kgVandepitte
10
80 kgFrigo
11
70 kgPollefliet
12
74 kgMarsman
13
75 kgBoven
14
62 kgBroex
15
75 kgVangheluwe
16
79 kgKaesemans
17
66 kgBerckmoes
21
61 kgKarpenko
23
77 kgDauphin
25
70 kgKurits
26
74 kgStaune-Mittet
27
67 kgLange
31
72 kgKluckers
32
71 kg
1
74 kgvan Dijke
3
74 kgPickrell
4
72 kgHoole
5
81 kgKrul
6
75 kgVan Hemelen
8
71 kgDrizners
9
70 kgVandepitte
10
80 kgFrigo
11
70 kgPollefliet
12
74 kgMarsman
13
75 kgBoven
14
62 kgBroex
15
75 kgVangheluwe
16
79 kgKaesemans
17
66 kgBerckmoes
21
61 kgKarpenko
23
77 kgDauphin
25
70 kgKurits
26
74 kgStaune-Mittet
27
67 kgLange
31
72 kgKluckers
32
71 kg
Weight (KG) →
Result →
81
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJKE Mick | 74 |
3 | VAN DIJKE Tim | 74 |
4 | PICKRELL Riley | 72 |
5 | HOOLE Daan | 81 |
6 | KRUL Wessel | 75 |
8 | VAN HEMELEN Vincent | 71 |
9 | DRIZNERS Jarrad | 70 |
10 | VANDEPITTE Nathan | 80 |
11 | FRIGO Marco | 70 |
12 | POLLEFLIET Gianluca | 74 |
13 | MARSMAN Tim | 75 |
14 | BOVEN Lars | 62 |
15 | BROEX Victor | 75 |
16 | VANGHELUWE Warre | 79 |
17 | KAESEMANS Jasper | 66 |
21 | BERCKMOES Jenno | 61 |
23 | KARPENKO Gleb | 77 |
25 | DAUPHIN Florian | 70 |
26 | KURITS Joonas | 74 |
27 | STAUNE-MITTET Johannes | 67 |
31 | LANGE Colby | 72 |
32 | KLUCKERS Arthur | 71 |