Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Boven
1
62 kgKramer
2
74 kgMarsman
3
75 kgPlowright
4
80 kgDe Pooter
5
66 kgAndresen
6
69 kgHarteel
9
66 kgSimmons
10
68 kgLambrecht
11
75 kgRomeo
13
75 kgVermoote
15
73 kgClaeys
16
68.5 kgvan Dijke
17
74 kgVan Hautegem
19
64 kgKogut
22
77 kgVan de Paar
25
79 kgLe Huitouze
26
71 kg
1
62 kgKramer
2
74 kgMarsman
3
75 kgPlowright
4
80 kgDe Pooter
5
66 kgAndresen
6
69 kgHarteel
9
66 kgSimmons
10
68 kgLambrecht
11
75 kgRomeo
13
75 kgVermoote
15
73 kgClaeys
16
68.5 kgvan Dijke
17
74 kgVan Hautegem
19
64 kgKogut
22
77 kgVan de Paar
25
79 kgLe Huitouze
26
71 kg
Weight (KG) →
Result →
80
62
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BOVEN Lars | 62 |
2 | KRAMER Jesse | 74 |
3 | MARSMAN Tim | 75 |
4 | PLOWRIGHT Jensen | 80 |
5 | DE POOTER Dries | 66 |
6 | ANDRESEN Tobias Lund | 69 |
9 | HARTEEL Jelle | 66 |
10 | SIMMONS Colby | 68 |
11 | LAMBRECHT Michiel | 75 |
13 | ROMEO Iván | 75 |
15 | VERMOOTE Jelle | 73 |
16 | CLAEYS Robbe | 68.5 |
17 | VAN DIJKE Tim | 74 |
19 | VAN HAUTEGEM Leander | 64 |
22 | KOGUT Oded | 77 |
25 | VAN DE PAAR Jarne | 79 |
26 | LE HUITOUZE Eddy | 71 |