Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Moonen
2
66 kgBehrens
3
80 kgVandenstorme
4
64 kgDelle Vedove
5
73 kgAvondts
6
62 kgVangheluwe
7
79 kgKällberg
8
69 kgSöderqvist
10
83 kgLührs
13
83 kgLootens
14
74 kgLambrecht
17
75 kgRagilo
18
70 kgDeman
20
76 kgArtz
24
71 kgKärsten
25
75 kgOmloop
27
70 kgSavino
29
70 kg
2
66 kgBehrens
3
80 kgVandenstorme
4
64 kgDelle Vedove
5
73 kgAvondts
6
62 kgVangheluwe
7
79 kgKällberg
8
69 kgSöderqvist
10
83 kgLührs
13
83 kgLootens
14
74 kgLambrecht
17
75 kgRagilo
18
70 kgDeman
20
76 kgArtz
24
71 kgKärsten
25
75 kgOmloop
27
70 kgSavino
29
70 kg
Weight (KG) →
Result →
83
62
2
29
# | Rider | Weight (KG) |
---|---|---|
2 | MOONEN Zeno | 66 |
3 | BEHRENS Niklas | 80 |
4 | VANDENSTORME Dylan | 64 |
5 | DELLE VEDOVE Alessio | 73 |
6 | AVONDTS Mathis | 62 |
7 | VANGHELUWE Warre | 79 |
8 | KÄLLBERG Axel | 69 |
10 | SÖDERQVIST Jakob | 83 |
13 | LÜHRS Leslie | 83 |
14 | LOOTENS Gust | 74 |
17 | LAMBRECHT Michiel | 75 |
18 | RAGILO Frank Aron | 70 |
20 | DEMAN Brem | 76 |
24 | ARTZ Huub | 71 |
25 | KÄRSTEN Moritz | 75 |
27 | OMLOOP Mats | 70 |
29 | SAVINO Federico | 70 |