Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Moonen
2
66 kgSöderqvist
3
83 kgVangheluwe
4
79 kgBehrens
5
80 kgVandenstorme
6
64 kgKällberg
7
69 kgDelle Vedove
8
73 kgAvondts
9
62 kgLührs
13
83 kgLootens
14
74 kgVercouillie
16
66 kgLambrecht
19
75 kgRagilo
20
70 kgArtz
21
71 kgvan Sintmaartensdijk
23
77 kgLovidius
24
70 kgDeman
26
76 kgSavino
31
70 kgKärsten
32
75 kgRaccagni Noviero
33
75 kgOmloop
35
70 kg
2
66 kgSöderqvist
3
83 kgVangheluwe
4
79 kgBehrens
5
80 kgVandenstorme
6
64 kgKällberg
7
69 kgDelle Vedove
8
73 kgAvondts
9
62 kgLührs
13
83 kgLootens
14
74 kgVercouillie
16
66 kgLambrecht
19
75 kgRagilo
20
70 kgArtz
21
71 kgvan Sintmaartensdijk
23
77 kgLovidius
24
70 kgDeman
26
76 kgSavino
31
70 kgKärsten
32
75 kgRaccagni Noviero
33
75 kgOmloop
35
70 kg
Weight (KG) →
Result →
83
62
2
35
# | Rider | Weight (KG) |
---|---|---|
2 | MOONEN Zeno | 66 |
3 | SÖDERQVIST Jakob | 83 |
4 | VANGHELUWE Warre | 79 |
5 | BEHRENS Niklas | 80 |
6 | VANDENSTORME Dylan | 64 |
7 | KÄLLBERG Axel | 69 |
8 | DELLE VEDOVE Alessio | 73 |
9 | AVONDTS Mathis | 62 |
13 | LÜHRS Leslie | 83 |
14 | LOOTENS Gust | 74 |
16 | VERCOUILLIE Victor | 66 |
19 | LAMBRECHT Michiel | 75 |
20 | RAGILO Frank Aron | 70 |
21 | ARTZ Huub | 71 |
23 | VAN SINTMAARTENSDIJK Roel | 77 |
24 | LOVIDIUS Edvin | 70 |
26 | DEMAN Brem | 76 |
31 | SAVINO Federico | 70 |
32 | KÄRSTEN Moritz | 75 |
33 | RACCAGNI NOVIERO Andrea | 75 |
35 | OMLOOP Mats | 70 |