Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 70
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
De Greef
1
77 kgMeersman
3
63 kgVanendert
4
62 kgCornu
5
78 kgRuijgh
6
64 kgJacobs
8
68 kgVan Avermaet
9
74 kgAugustyn
10
65 kgGourgue
11
62 kgDuijn
14
73 kgAernouts
15
60 kgVandenbergh
19
86 kgVelits
25
63 kgde Baat
26
66 kgVantornout
28
69 kgVanmuysen
35
75 kgPardini
36
68 kgde Jonge
43
65 kgCrawford
60
59 kgDevillers
64
62 kg
1
77 kgMeersman
3
63 kgVanendert
4
62 kgCornu
5
78 kgRuijgh
6
64 kgJacobs
8
68 kgVan Avermaet
9
74 kgAugustyn
10
65 kgGourgue
11
62 kgDuijn
14
73 kgAernouts
15
60 kgVandenbergh
19
86 kgVelits
25
63 kgde Baat
26
66 kgVantornout
28
69 kgVanmuysen
35
75 kgPardini
36
68 kgde Jonge
43
65 kgCrawford
60
59 kgDevillers
64
62 kg
Weight (KG) →
Result →
86
59
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | DE GREEF Francis | 77 |
3 | MEERSMAN Gianni | 63 |
4 | VANENDERT Jelle | 62 |
5 | CORNU Dominique | 78 |
6 | RUIJGH Rob | 64 |
8 | JACOBS Pieter | 68 |
9 | VAN AVERMAET Greg | 74 |
10 | AUGUSTYN John-Lee | 65 |
11 | GOURGUE Benjamin | 62 |
14 | DUIJN Huub | 73 |
15 | AERNOUTS Bart | 60 |
19 | VANDENBERGH Stijn | 86 |
25 | VELITS Peter | 63 |
26 | DE BAAT Arjen | 66 |
28 | VANTORNOUT Klaas | 69 |
35 | VANMUYSEN Roel | 75 |
36 | PARDINI Olivier | 68 |
43 | DE JONGE Maarten | 65 |
60 | CRAWFORD Jai | 59 |
64 | DEVILLERS Gilles | 62 |