Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bakelants
1
67 kgBonnafond
3
68 kgDegand
4
63 kgBaugnies
5
69 kgde Jonge
6
65 kgArmée
8
72 kgCalleeuw
9
71 kgEijssen
10
60 kgBagot
11
65 kgPratte
12
67 kgPolazzi
15
63 kgVichot
17
74 kgSerry
20
66 kgDevillers
21
62 kgKvist
25
68 kgDockx
26
64 kgZingle
31
67 kgPardini
32
68 kgBertrand
38
65 kgDron
44
72 kg
1
67 kgBonnafond
3
68 kgDegand
4
63 kgBaugnies
5
69 kgde Jonge
6
65 kgArmée
8
72 kgCalleeuw
9
71 kgEijssen
10
60 kgBagot
11
65 kgPratte
12
67 kgPolazzi
15
63 kgVichot
17
74 kgSerry
20
66 kgDevillers
21
62 kgKvist
25
68 kgDockx
26
64 kgZingle
31
67 kgPardini
32
68 kgBertrand
38
65 kgDron
44
72 kg
Weight (KG) →
Result →
74
60
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | BAKELANTS Jan | 67 |
3 | BONNAFOND Guillaume | 68 |
4 | DEGAND Thomas | 63 |
5 | BAUGNIES Jérôme | 69 |
6 | DE JONGE Maarten | 65 |
8 | ARMÉE Sander | 72 |
9 | CALLEEUW Joeri | 71 |
10 | EIJSSEN Yannick | 60 |
11 | BAGOT Yoann | 65 |
12 | PRATTE Philippe | 67 |
15 | POLAZZI Fabio | 63 |
17 | VICHOT Arthur | 74 |
20 | SERRY Pieter | 66 |
21 | DEVILLERS Gilles | 62 |
25 | KVIST Thomas Vedel | 68 |
26 | DOCKX Gert | 64 |
31 | ZINGLE Romain | 67 |
32 | PARDINI Olivier | 68 |
38 | BERTRAND Jonathan | 65 |
44 | DRON Boris | 72 |