Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 72
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Sapa
3
82 kgAckermann
5
62 kgFlammang
7
80 kgThomas
8
71 kgWyss
10
65 kgDrucker
11
75 kgPawlak
13
73 kgBrammeier
18
72 kgLisowicz
21
85 kgLang
22
73 kgDidier
27
68 kgKiendyś
29
78 kgSchwab
34
65 kgFrei
50
71 kgClancy
54
79 kgvan Vooren
57
75 kgde Baat
73
66 kgMortensen
89
70 kg
3
82 kgAckermann
5
62 kgFlammang
7
80 kgThomas
8
71 kgWyss
10
65 kgDrucker
11
75 kgPawlak
13
73 kgBrammeier
18
72 kgLisowicz
21
85 kgLang
22
73 kgDidier
27
68 kgKiendyś
29
78 kgSchwab
34
65 kgFrei
50
71 kgClancy
54
79 kgvan Vooren
57
75 kgde Baat
73
66 kgMortensen
89
70 kg
Weight (KG) →
Result →
85
62
3
89
# | Rider | Weight (KG) |
---|---|---|
3 | SAPA Marcin | 82 |
5 | ACKERMANN Silvère | 62 |
7 | FLAMMANG Tom | 80 |
8 | THOMAS Geraint | 71 |
10 | WYSS Danilo | 65 |
11 | DRUCKER Jempy | 75 |
13 | PAWLAK Wojciech | 73 |
18 | BRAMMEIER Matt | 72 |
21 | LISOWICZ Tomasz | 85 |
22 | LANG Pirmin | 73 |
27 | DIDIER Laurent | 68 |
29 | KIENDYŚ Tomasz | 78 |
34 | SCHWAB Hubert | 65 |
50 | FREI Thomas | 71 |
54 | CLANCY Edward | 79 |
57 | VAN VOOREN Steven | 75 |
73 | DE BAAT Arjen | 66 |
89 | MORTENSEN Martin | 70 |