Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 112
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Thomas
1
71 kgTennant
4
82 kgFlammang
5
80 kgSokolov
8
70 kgvan Leijen
10
73 kgOostlander
14
78 kgTimmer
17
77 kgGastauer
18
73 kgMollema
19
64 kgReihs
22
75 kgBodnar
23
77 kgde Baat
24
66 kgSwift
26
69 kgBellemakers
28
75 kgPoels
30
66 kgVinther
34
68 kgHayles
35
80 kgRasch
47
72 kgCraven
61
75 kgDidier
63
68 kgvan Groen
75
69 kg
1
71 kgTennant
4
82 kgFlammang
5
80 kgSokolov
8
70 kgvan Leijen
10
73 kgOostlander
14
78 kgTimmer
17
77 kgGastauer
18
73 kgMollema
19
64 kgReihs
22
75 kgBodnar
23
77 kgde Baat
24
66 kgSwift
26
69 kgBellemakers
28
75 kgPoels
30
66 kgVinther
34
68 kgHayles
35
80 kgRasch
47
72 kgCraven
61
75 kgDidier
63
68 kgvan Groen
75
69 kg
Weight (KG) →
Result →
82
64
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | THOMAS Geraint | 71 |
4 | TENNANT Andrew | 82 |
5 | FLAMMANG Tom | 80 |
8 | SOKOLOV Evgeny | 70 |
10 | VAN LEIJEN Joost | 73 |
14 | OOSTLANDER Sander | 78 |
17 | TIMMER Albert | 77 |
18 | GASTAUER Ben | 73 |
19 | MOLLEMA Bauke | 64 |
22 | REIHS Michael | 75 |
23 | BODNAR Maciej | 77 |
24 | DE BAAT Arjen | 66 |
26 | SWIFT Ben | 69 |
28 | BELLEMAKERS Dirk | 75 |
30 | POELS Wout | 66 |
34 | VINTHER Troels Rønning | 68 |
35 | HAYLES Robert | 80 |
47 | RASCH Gabriel | 72 |
61 | CRAVEN Dan | 75 |
63 | DIDIER Laurent | 68 |
75 | VAN GROEN Arnoud | 69 |