Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Thomas
1
71 kgTennant
3
82 kgFlammang
6
80 kgSokolov
8
70 kgTimmer
9
77 kgBodnar
10
77 kgMollema
11
64 kgGastauer
12
73 kgvan Leijen
16
73 kgBellemakers
20
75 kgOostlander
22
78 kgRasch
25
72 kgPoels
40
66 kgVinther
45
68 kgde Baat
46
66 kgSwift
47
69 kgReihs
48
75 kgHayles
52
80 kgDidier
56
68 kgCraven
57
75 kgvan Groen
73
69 kg
1
71 kgTennant
3
82 kgFlammang
6
80 kgSokolov
8
70 kgTimmer
9
77 kgBodnar
10
77 kgMollema
11
64 kgGastauer
12
73 kgvan Leijen
16
73 kgBellemakers
20
75 kgOostlander
22
78 kgRasch
25
72 kgPoels
40
66 kgVinther
45
68 kgde Baat
46
66 kgSwift
47
69 kgReihs
48
75 kgHayles
52
80 kgDidier
56
68 kgCraven
57
75 kgvan Groen
73
69 kg
Weight (KG) →
Result →
82
64
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | THOMAS Geraint | 71 |
3 | TENNANT Andrew | 82 |
6 | FLAMMANG Tom | 80 |
8 | SOKOLOV Evgeny | 70 |
9 | TIMMER Albert | 77 |
10 | BODNAR Maciej | 77 |
11 | MOLLEMA Bauke | 64 |
12 | GASTAUER Ben | 73 |
16 | VAN LEIJEN Joost | 73 |
20 | BELLEMAKERS Dirk | 75 |
22 | OOSTLANDER Sander | 78 |
25 | RASCH Gabriel | 72 |
40 | POELS Wout | 66 |
45 | VINTHER Troels Rønning | 68 |
46 | DE BAAT Arjen | 66 |
47 | SWIFT Ben | 69 |
48 | REIHS Michael | 75 |
52 | HAYLES Robert | 80 |
56 | DIDIER Laurent | 68 |
57 | CRAVEN Dan | 75 |
73 | VAN GROEN Arnoud | 69 |