Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Sokolov
2
70 kgTimmer
3
77 kgRasch
4
72 kgBodnar
6
77 kgBellemakers
7
75 kgThomas
10
71 kgGastauer
12
73 kgMollema
13
64 kgvan Leijen
25
73 kgFlammang
31
80 kgTennant
32
82 kgOostlander
33
78 kgPoels
55
66 kgVinther
66
68 kgvan Groen
72
69 kgDidier
73
68 kgCraven
75
75 kgReihs
81
75 kgHayles
84
80 kgde Baat
86
66 kgSwift
87
69 kg
2
70 kgTimmer
3
77 kgRasch
4
72 kgBodnar
6
77 kgBellemakers
7
75 kgThomas
10
71 kgGastauer
12
73 kgMollema
13
64 kgvan Leijen
25
73 kgFlammang
31
80 kgTennant
32
82 kgOostlander
33
78 kgPoels
55
66 kgVinther
66
68 kgvan Groen
72
69 kgDidier
73
68 kgCraven
75
75 kgReihs
81
75 kgHayles
84
80 kgde Baat
86
66 kgSwift
87
69 kg
Weight (KG) →
Result →
82
64
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | SOKOLOV Evgeny | 70 |
3 | TIMMER Albert | 77 |
4 | RASCH Gabriel | 72 |
6 | BODNAR Maciej | 77 |
7 | BELLEMAKERS Dirk | 75 |
10 | THOMAS Geraint | 71 |
12 | GASTAUER Ben | 73 |
13 | MOLLEMA Bauke | 64 |
25 | VAN LEIJEN Joost | 73 |
31 | FLAMMANG Tom | 80 |
32 | TENNANT Andrew | 82 |
33 | OOSTLANDER Sander | 78 |
55 | POELS Wout | 66 |
66 | VINTHER Troels Rønning | 68 |
72 | VAN GROEN Arnoud | 69 |
73 | DIDIER Laurent | 68 |
75 | CRAVEN Dan | 75 |
81 | REIHS Michael | 75 |
84 | HAYLES Robert | 80 |
86 | DE BAAT Arjen | 66 |
87 | SWIFT Ben | 69 |