Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Thomas
1
71 kgTennant
3
82 kgFlammang
6
80 kgSokolov
8
70 kgTimmer
9
77 kgBodnar
11
77 kgMollema
12
64 kgGastauer
13
73 kgvan Leijen
16
73 kgBellemakers
20
75 kgRasch
24
72 kgPoels
34
66 kgReihs
38
75 kgVinther
44
68 kgDidier
47
68 kgSwift
54
69 kgCraven
55
75 kgHayles
56
80 kgvan Groen
66
69 kg
1
71 kgTennant
3
82 kgFlammang
6
80 kgSokolov
8
70 kgTimmer
9
77 kgBodnar
11
77 kgMollema
12
64 kgGastauer
13
73 kgvan Leijen
16
73 kgBellemakers
20
75 kgRasch
24
72 kgPoels
34
66 kgReihs
38
75 kgVinther
44
68 kgDidier
47
68 kgSwift
54
69 kgCraven
55
75 kgHayles
56
80 kgvan Groen
66
69 kg
Weight (KG) →
Result →
82
64
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | THOMAS Geraint | 71 |
3 | TENNANT Andrew | 82 |
6 | FLAMMANG Tom | 80 |
8 | SOKOLOV Evgeny | 70 |
9 | TIMMER Albert | 77 |
11 | BODNAR Maciej | 77 |
12 | MOLLEMA Bauke | 64 |
13 | GASTAUER Ben | 73 |
16 | VAN LEIJEN Joost | 73 |
20 | BELLEMAKERS Dirk | 75 |
24 | RASCH Gabriel | 72 |
34 | POELS Wout | 66 |
38 | REIHS Michael | 75 |
44 | VINTHER Troels Rønning | 68 |
47 | DIDIER Laurent | 68 |
54 | SWIFT Ben | 69 |
55 | CRAVEN Dan | 75 |
56 | HAYLES Robert | 80 |
66 | VAN GROEN Arnoud | 69 |