Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Thomas
2
71 kgFlammang
13
80 kgvan Groen
15
69 kgDidier
17
68 kgPoels
18
66 kgBodnar
22
77 kgRasch
25
72 kgSokolov
28
70 kgvan Leijen
29
73 kgMollema
32
64 kgTimmer
34
77 kgBellemakers
38
75 kgTennant
39
82 kgReihs
42
75 kgGastauer
43
73 kgVinther
55
68 kgCraven
60
75 kgHayles
71
80 kgSwift
83
69 kg
2
71 kgFlammang
13
80 kgvan Groen
15
69 kgDidier
17
68 kgPoels
18
66 kgBodnar
22
77 kgRasch
25
72 kgSokolov
28
70 kgvan Leijen
29
73 kgMollema
32
64 kgTimmer
34
77 kgBellemakers
38
75 kgTennant
39
82 kgReihs
42
75 kgGastauer
43
73 kgVinther
55
68 kgCraven
60
75 kgHayles
71
80 kgSwift
83
69 kg
Weight (KG) →
Result →
82
64
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | THOMAS Geraint | 71 |
13 | FLAMMANG Tom | 80 |
15 | VAN GROEN Arnoud | 69 |
17 | DIDIER Laurent | 68 |
18 | POELS Wout | 66 |
22 | BODNAR Maciej | 77 |
25 | RASCH Gabriel | 72 |
28 | SOKOLOV Evgeny | 70 |
29 | VAN LEIJEN Joost | 73 |
32 | MOLLEMA Bauke | 64 |
34 | TIMMER Albert | 77 |
38 | BELLEMAKERS Dirk | 75 |
39 | TENNANT Andrew | 82 |
42 | REIHS Michael | 75 |
43 | GASTAUER Ben | 73 |
55 | VINTHER Troels Rønning | 68 |
60 | CRAVEN Dan | 75 |
71 | HAYLES Robert | 80 |
83 | SWIFT Ben | 69 |