Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Thomas
4
71 kgPoels
16
66 kgvan Groen
18
69 kgDidier
21
68 kgBodnar
24
77 kgMollema
25
64 kgFlammang
28
80 kgGastauer
32
73 kgBellemakers
37
75 kgVinther
39
68 kgTimmer
49
77 kgTennant
52
82 kgCraven
53
75 kgRasch
56
72 kgReihs
59
75 kgSokolov
60
70 kgvan Leijen
63
73 kgSwift
83
69 kgHayles
85
80 kg
4
71 kgPoels
16
66 kgvan Groen
18
69 kgDidier
21
68 kgBodnar
24
77 kgMollema
25
64 kgFlammang
28
80 kgGastauer
32
73 kgBellemakers
37
75 kgVinther
39
68 kgTimmer
49
77 kgTennant
52
82 kgCraven
53
75 kgRasch
56
72 kgReihs
59
75 kgSokolov
60
70 kgvan Leijen
63
73 kgSwift
83
69 kgHayles
85
80 kg
Weight (KG) →
Result →
82
64
4
85
# | Rider | Weight (KG) |
---|---|---|
4 | THOMAS Geraint | 71 |
16 | POELS Wout | 66 |
18 | VAN GROEN Arnoud | 69 |
21 | DIDIER Laurent | 68 |
24 | BODNAR Maciej | 77 |
25 | MOLLEMA Bauke | 64 |
28 | FLAMMANG Tom | 80 |
32 | GASTAUER Ben | 73 |
37 | BELLEMAKERS Dirk | 75 |
39 | VINTHER Troels Rønning | 68 |
49 | TIMMER Albert | 77 |
52 | TENNANT Andrew | 82 |
53 | CRAVEN Dan | 75 |
56 | RASCH Gabriel | 72 |
59 | REIHS Michael | 75 |
60 | SOKOLOV Evgeny | 70 |
63 | VAN LEIJEN Joost | 73 |
83 | SWIFT Ben | 69 |
85 | HAYLES Robert | 80 |