Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 88
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Hegreberg
5
72 kgKondrut
6
79 kgMarycz
7
69 kgCadamuro
13
78 kgShpilevsky
15
78 kgKiendyś
19
78 kgDidier
24
68 kgKrivtsov
25
72 kgWalsleben
31
66 kgCraven
35
75 kgKittel
36
82 kgWyss
39
63 kgOostlander
44
78 kgLisowicz
45
85 kgSchulting
47
70 kgSteensen
53
65 kgDrucker
56
75 kgZangerle
66
63 kgvan Leijen
74
73 kg
5
72 kgKondrut
6
79 kgMarycz
7
69 kgCadamuro
13
78 kgShpilevsky
15
78 kgKiendyś
19
78 kgDidier
24
68 kgKrivtsov
25
72 kgWalsleben
31
66 kgCraven
35
75 kgKittel
36
82 kgWyss
39
63 kgOostlander
44
78 kgLisowicz
45
85 kgSchulting
47
70 kgSteensen
53
65 kgDrucker
56
75 kgZangerle
66
63 kgvan Leijen
74
73 kg
Weight (KG) →
Result →
85
63
5
74
# | Rider | Weight (KG) |
---|---|---|
5 | HEGREBERG Morten | 72 |
6 | KONDRUT Vitaliy | 79 |
7 | MARYCZ Jarosław | 69 |
13 | CADAMURO Simone | 78 |
15 | SHPILEVSKY Boris | 78 |
19 | KIENDYŚ Tomasz | 78 |
24 | DIDIER Laurent | 68 |
25 | KRIVTSOV Dmytro | 72 |
31 | WALSLEBEN Philipp | 66 |
35 | CRAVEN Dan | 75 |
36 | KITTEL Marcel | 82 |
39 | WYSS Marcel | 63 |
44 | OOSTLANDER Sander | 78 |
45 | LISOWICZ Tomasz | 85 |
47 | SCHULTING Peter | 70 |
53 | STEENSEN André | 65 |
56 | DRUCKER Jempy | 75 |
66 | ZANGERLE Joel | 63 |
74 | VAN LEIJEN Joost | 73 |