Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 174
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Wyss
1
63 kgGretsch
2
69 kgVandborg
4
75 kgvan Garderen
7
72 kgBarton
8
77 kgKostyuk
9
66 kgStetina
10
63 kgGastauer
24
73 kgKondrut
26
79 kgDidier
28
68 kgDrucker
37
75 kgBeyer
43
63 kgLigthart
44
72 kgFlammang
61
80 kgDmitriyev
93
69 kgTleubayev
100
70 kgNaibo
109
62 kgRenev
113
68 kgRaimbekov
117
66 kgIglinskiy
122
68 kg
1
63 kgGretsch
2
69 kgVandborg
4
75 kgvan Garderen
7
72 kgBarton
8
77 kgKostyuk
9
66 kgStetina
10
63 kgGastauer
24
73 kgKondrut
26
79 kgDidier
28
68 kgDrucker
37
75 kgBeyer
43
63 kgLigthart
44
72 kgFlammang
61
80 kgDmitriyev
93
69 kgTleubayev
100
70 kgNaibo
109
62 kgRenev
113
68 kgRaimbekov
117
66 kgIglinskiy
122
68 kg
Weight (KG) →
Result →
80
62
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | WYSS Marcel | 63 |
2 | GRETSCH Patrick | 69 |
4 | VANDBORG Brian Bach | 75 |
7 | VAN GARDEREN Tejay | 72 |
8 | BARTON Chris | 77 |
9 | KOSTYUK Denys | 66 |
10 | STETINA Peter | 63 |
24 | GASTAUER Ben | 73 |
26 | KONDRUT Vitaliy | 79 |
28 | DIDIER Laurent | 68 |
37 | DRUCKER Jempy | 75 |
43 | BEYER Chad | 63 |
44 | LIGTHART Pim | 72 |
61 | FLAMMANG Tom | 80 |
93 | DMITRIYEV Valeriy | 69 |
100 | TLEUBAYEV Ruslan | 70 |
109 | NAIBO Carl | 62 |
113 | RENEV Sergey | 68 |
117 | RAIMBEKOV Bolat | 66 |
122 | IGLINSKIY Valentin | 68 |