Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 29
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
van Garderen
1
72 kgIglinskiy
2
68 kgKostyuk
7
66 kgBarton
23
77 kgBeyer
37
63 kgWyss
41
63 kgDidier
44
68 kgVandborg
45
75 kgTleubayev
51
70 kgRenev
55
68 kgStetina
57
63 kgDrucker
63
75 kgGastauer
69
73 kgNaibo
76
62 kgDmitriyev
79
69 kgFlammang
84
80 kgGretsch
89
69 kgLigthart
110
72 kgKondrut
112
79 kgRaimbekov
114
66 kg
1
72 kgIglinskiy
2
68 kgKostyuk
7
66 kgBarton
23
77 kgBeyer
37
63 kgWyss
41
63 kgDidier
44
68 kgVandborg
45
75 kgTleubayev
51
70 kgRenev
55
68 kgStetina
57
63 kgDrucker
63
75 kgGastauer
69
73 kgNaibo
76
62 kgDmitriyev
79
69 kgFlammang
84
80 kgGretsch
89
69 kgLigthart
110
72 kgKondrut
112
79 kgRaimbekov
114
66 kg
Weight (KG) →
Result →
80
62
1
114
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GARDEREN Tejay | 72 |
2 | IGLINSKIY Valentin | 68 |
7 | KOSTYUK Denys | 66 |
23 | BARTON Chris | 77 |
37 | BEYER Chad | 63 |
41 | WYSS Marcel | 63 |
44 | DIDIER Laurent | 68 |
45 | VANDBORG Brian Bach | 75 |
51 | TLEUBAYEV Ruslan | 70 |
55 | RENEV Sergey | 68 |
57 | STETINA Peter | 63 |
63 | DRUCKER Jempy | 75 |
69 | GASTAUER Ben | 73 |
76 | NAIBO Carl | 62 |
79 | DMITRIYEV Valeriy | 69 |
84 | FLAMMANG Tom | 80 |
89 | GRETSCH Patrick | 69 |
110 | LIGTHART Pim | 72 |
112 | KONDRUT Vitaliy | 79 |
114 | RAIMBEKOV Bolat | 66 |