Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.5 * weight - 132
This means that on average for every extra kilogram weight a rider loses 2.5 positions in the result.
Kostyuk
1
66 kgvan Garderen
2
72 kgNaibo
3
62 kgWyss
4
63 kgVandborg
6
75 kgStetina
7
63 kgGastauer
12
73 kgIglinskiy
14
68 kgDrucker
22
75 kgBarton
26
77 kgGretsch
40
69 kgTleubayev
46
70 kgBeyer
48
63 kgRenev
64
68 kgRaimbekov
70
66 kgLigthart
79
72 kgDidier
81
68 kgDmitriyev
91
69 kgFlammang
100
80 kgKondrut
104
79 kg
1
66 kgvan Garderen
2
72 kgNaibo
3
62 kgWyss
4
63 kgVandborg
6
75 kgStetina
7
63 kgGastauer
12
73 kgIglinskiy
14
68 kgDrucker
22
75 kgBarton
26
77 kgGretsch
40
69 kgTleubayev
46
70 kgBeyer
48
63 kgRenev
64
68 kgRaimbekov
70
66 kgLigthart
79
72 kgDidier
81
68 kgDmitriyev
91
69 kgFlammang
100
80 kgKondrut
104
79 kg
Weight (KG) →
Result →
80
62
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | KOSTYUK Denys | 66 |
2 | VAN GARDEREN Tejay | 72 |
3 | NAIBO Carl | 62 |
4 | WYSS Marcel | 63 |
6 | VANDBORG Brian Bach | 75 |
7 | STETINA Peter | 63 |
12 | GASTAUER Ben | 73 |
14 | IGLINSKIY Valentin | 68 |
22 | DRUCKER Jempy | 75 |
26 | BARTON Chris | 77 |
40 | GRETSCH Patrick | 69 |
46 | TLEUBAYEV Ruslan | 70 |
48 | BEYER Chad | 63 |
64 | RENEV Sergey | 68 |
70 | RAIMBEKOV Bolat | 66 |
79 | LIGTHART Pim | 72 |
81 | DIDIER Laurent | 68 |
91 | DMITRIYEV Valeriy | 69 |
100 | FLAMMANG Tom | 80 |
104 | KONDRUT Vitaliy | 79 |