Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 47
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Flammang
1
80 kgIglinskiy
10
68 kgKostyuk
11
66 kgTleubayev
18
70 kgVandborg
35
75 kgRenev
37
68 kgWyss
39
63 kgvan Garderen
42
72 kgStetina
48
63 kgGastauer
51
73 kgBeyer
60
63 kgDrucker
61
75 kgDmitriyev
74
69 kgNaibo
79
62 kgGretsch
80
69 kgDidier
87
68 kgBarton
88
77 kgLigthart
89
72 kgRaimbekov
93
66 kgKondrut
104
79 kg
1
80 kgIglinskiy
10
68 kgKostyuk
11
66 kgTleubayev
18
70 kgVandborg
35
75 kgRenev
37
68 kgWyss
39
63 kgvan Garderen
42
72 kgStetina
48
63 kgGastauer
51
73 kgBeyer
60
63 kgDrucker
61
75 kgDmitriyev
74
69 kgNaibo
79
62 kgGretsch
80
69 kgDidier
87
68 kgBarton
88
77 kgLigthart
89
72 kgRaimbekov
93
66 kgKondrut
104
79 kg
Weight (KG) →
Result →
80
62
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | FLAMMANG Tom | 80 |
10 | IGLINSKIY Valentin | 68 |
11 | KOSTYUK Denys | 66 |
18 | TLEUBAYEV Ruslan | 70 |
35 | VANDBORG Brian Bach | 75 |
37 | RENEV Sergey | 68 |
39 | WYSS Marcel | 63 |
42 | VAN GARDEREN Tejay | 72 |
48 | STETINA Peter | 63 |
51 | GASTAUER Ben | 73 |
60 | BEYER Chad | 63 |
61 | DRUCKER Jempy | 75 |
74 | DMITRIYEV Valeriy | 69 |
79 | NAIBO Carl | 62 |
80 | GRETSCH Patrick | 69 |
87 | DIDIER Laurent | 68 |
88 | BARTON Chris | 77 |
89 | LIGTHART Pim | 72 |
93 | RAIMBEKOV Bolat | 66 |
104 | KONDRUT Vitaliy | 79 |