Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.1 * weight - 172
This means that on average for every extra kilogram weight a rider loses 3.1 positions in the result.
Kostyuk
3
66 kgvan Garderen
5
72 kgStetina
6
63 kgWyss
7
63 kgLigthart
11
72 kgGretsch
13
69 kgDmitriyev
19
69 kgRenev
24
68 kgVandborg
27
75 kgGastauer
28
73 kgNaibo
32
62 kgRaimbekov
35
66 kgIglinskiy
61
68 kgBeyer
62
63 kgFlammang
68
80 kgDidier
89
68 kgBarton
91
77 kgTleubayev
92
70 kgDrucker
94
75 kgKondrut
99
79 kg
3
66 kgvan Garderen
5
72 kgStetina
6
63 kgWyss
7
63 kgLigthart
11
72 kgGretsch
13
69 kgDmitriyev
19
69 kgRenev
24
68 kgVandborg
27
75 kgGastauer
28
73 kgNaibo
32
62 kgRaimbekov
35
66 kgIglinskiy
61
68 kgBeyer
62
63 kgFlammang
68
80 kgDidier
89
68 kgBarton
91
77 kgTleubayev
92
70 kgDrucker
94
75 kgKondrut
99
79 kg
Weight (KG) →
Result →
80
62
3
99
# | Rider | Weight (KG) |
---|---|---|
3 | KOSTYUK Denys | 66 |
5 | VAN GARDEREN Tejay | 72 |
6 | STETINA Peter | 63 |
7 | WYSS Marcel | 63 |
11 | LIGTHART Pim | 72 |
13 | GRETSCH Patrick | 69 |
19 | DMITRIYEV Valeriy | 69 |
24 | RENEV Sergey | 68 |
27 | VANDBORG Brian Bach | 75 |
28 | GASTAUER Ben | 73 |
32 | NAIBO Carl | 62 |
35 | RAIMBEKOV Bolat | 66 |
61 | IGLINSKIY Valentin | 68 |
62 | BEYER Chad | 63 |
68 | FLAMMANG Tom | 80 |
89 | DIDIER Laurent | 68 |
91 | BARTON Chris | 77 |
92 | TLEUBAYEV Ruslan | 70 |
94 | DRUCKER Jempy | 75 |
99 | KONDRUT Vitaliy | 79 |