Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kittel
1
82 kgSinkeldam
2
77 kgSelander
3
72 kgLigthart
5
72 kgMeeusen
6
62 kgGmelich Meijling
7
77 kgSaggiorato
10
58 kgKrizek
16
74 kgPhinney
17
82 kgZangerle
19
63 kgOckeloen
22
66 kgAsselman
26
69 kgWarbasse
31
67 kgSergent
32
76 kgLammertink
33
61 kgAriesen
38
70 kg
1
82 kgSinkeldam
2
77 kgSelander
3
72 kgLigthart
5
72 kgMeeusen
6
62 kgGmelich Meijling
7
77 kgSaggiorato
10
58 kgKrizek
16
74 kgPhinney
17
82 kgZangerle
19
63 kgOckeloen
22
66 kgAsselman
26
69 kgWarbasse
31
67 kgSergent
32
76 kgLammertink
33
61 kgAriesen
38
70 kg
Weight (KG) →
Result →
82
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | SINKELDAM Ramon | 77 |
3 | SELANDER Bjorn | 72 |
5 | LIGTHART Pim | 72 |
6 | MEEUSEN Tom | 62 |
7 | GMELICH MEIJLING Jarno | 77 |
10 | SAGGIORATO Mirco | 58 |
16 | KRIZEK Matthias | 74 |
17 | PHINNEY Taylor | 82 |
19 | ZANGERLE Joel | 63 |
22 | OCKELOEN Jasper | 66 |
26 | ASSELMAN Jesper | 69 |
31 | WARBASSE Larry | 67 |
32 | SERGENT Jesse | 76 |
33 | LAMMERTINK Maurits | 61 |
38 | ARIESEN Johim | 70 |