Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Alafaci
3
77 kgCecchin
4
70 kgValgren
5
71 kgSaggiorato
7
58 kgDoull
10
71 kgRosskopf
11
74 kgCoenen
14
67 kgSilvestre
15
78 kgGuardiola
17
65 kgvan der Poel
18
75 kgYates
20
58 kgGrigorev
21
73 kgZahner
23
73 kgHansen
25
60 kgZangerle
30
63 kgBrusselman
32
76 kgVinther
33
68 kg
3
77 kgCecchin
4
70 kgValgren
5
71 kgSaggiorato
7
58 kgDoull
10
71 kgRosskopf
11
74 kgCoenen
14
67 kgSilvestre
15
78 kgGuardiola
17
65 kgvan der Poel
18
75 kgYates
20
58 kgGrigorev
21
73 kgZahner
23
73 kgHansen
25
60 kgZangerle
30
63 kgBrusselman
32
76 kgVinther
33
68 kg
Weight (KG) →
Result →
78
58
3
33
# | Rider | Weight (KG) |
---|---|---|
3 | ALAFACI Eugenio | 77 |
4 | CECCHIN Alberto | 70 |
5 | VALGREN Michael | 71 |
7 | SAGGIORATO Mirco | 58 |
10 | DOULL Owain | 71 |
11 | ROSSKOPF Joey | 74 |
14 | COENEN Johan | 67 |
15 | SILVESTRE Fábio | 78 |
17 | GUARDIOLA Salvador | 65 |
18 | VAN DER POEL David | 75 |
20 | YATES Simon | 58 |
21 | GRIGOREV Aleksandr | 73 |
23 | ZAHNER Simon | 73 |
25 | HANSEN Jesper | 60 |
30 | ZANGERLE Joel | 63 |
32 | BRUSSELMAN Twan | 76 |
33 | VINTHER Troels Rønning | 68 |