Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Doull
1
71 kgBille
2
67 kgMeisen
3
62 kgMerlier
4
76 kgTennant
5
82 kgCardis
6
72 kgPauwels
7
60 kgGrellier
8
65 kgCecchin
10
70 kgKamp
11
74 kgPage
12
64 kgOckeloen
13
66 kgSchulting
15
70 kgKrieger
16
71 kgde la Parte
18
64 kgKusztor
19
61 kgCalmejane
20
70 kgBajc
21
65 kgDavies
23
66 kgCornu
24
66 kgVermeersch
25
68 kgLienhard
27
73 kgVanthourenhout
29
64 kg
1
71 kgBille
2
67 kgMeisen
3
62 kgMerlier
4
76 kgTennant
5
82 kgCardis
6
72 kgPauwels
7
60 kgGrellier
8
65 kgCecchin
10
70 kgKamp
11
74 kgPage
12
64 kgOckeloen
13
66 kgSchulting
15
70 kgKrieger
16
71 kgde la Parte
18
64 kgKusztor
19
61 kgCalmejane
20
70 kgBajc
21
65 kgDavies
23
66 kgCornu
24
66 kgVermeersch
25
68 kgLienhard
27
73 kgVanthourenhout
29
64 kg
Weight (KG) →
Result →
82
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | DOULL Owain | 71 |
2 | BILLE Gaëtan | 67 |
3 | MEISEN Marcel | 62 |
4 | MERLIER Tim | 76 |
5 | TENNANT Andrew | 82 |
6 | CARDIS Romain | 72 |
7 | PAUWELS Kevin | 60 |
8 | GRELLIER Fabien | 65 |
10 | CECCHIN Alberto | 70 |
11 | KAMP Alexander | 74 |
12 | PAGE Dylan | 64 |
13 | OCKELOEN Jasper | 66 |
15 | SCHULTING Peter | 70 |
16 | KRIEGER Alexander | 71 |
18 | DE LA PARTE Víctor | 64 |
19 | KUSZTOR Péter | 61 |
20 | CALMEJANE Lilian | 70 |
21 | BAJC Andi | 65 |
23 | DAVIES Scott | 66 |
24 | CORNU Jérémy | 66 |
25 | VERMEERSCH Gianni | 68 |
27 | LIENHARD Fabian | 73 |
29 | VANTHOURENHOUT Dieter | 64 |