Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van den Brand
1
71 kgVermeltfoort
3
85 kgZurita
4
67 kgJones
5
81 kgBeukeboom
6
88 kgSilvestre
7
78 kgLienhard
8
73 kgPedersen
10
71 kgKoretzky
11
66 kgKoch
12
69 kgRäim
13
69 kgGuldhammer
14
66 kgAaen Jørgensen
17
63 kgBosman
18
68 kgBugter
19
81 kgBol
21
71 kgPhelan
22
73 kg
1
71 kgVermeltfoort
3
85 kgZurita
4
67 kgJones
5
81 kgBeukeboom
6
88 kgSilvestre
7
78 kgLienhard
8
73 kgPedersen
10
71 kgKoretzky
11
66 kgKoch
12
69 kgRäim
13
69 kgGuldhammer
14
66 kgAaen Jørgensen
17
63 kgBosman
18
68 kgBugter
19
81 kgBol
21
71 kgPhelan
22
73 kg
Weight (KG) →
Result →
88
63
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BRAND Twan | 71 |
3 | VERMELTFOORT Coen | 85 |
4 | ZURITA Francesc | 67 |
5 | JONES Brenton | 81 |
6 | BEUKEBOOM Dion | 88 |
7 | SILVESTRE Fábio | 78 |
8 | LIENHARD Fabian | 73 |
10 | PEDERSEN Casper | 71 |
11 | KORETZKY Clément | 66 |
12 | KOCH Michel | 69 |
13 | RÄIM Mihkel | 69 |
14 | GULDHAMMER Rasmus | 66 |
17 | AAEN JØRGENSEN Jonas | 63 |
18 | BOSMAN Gert-Jan | 68 |
19 | BUGTER Luuc | 81 |
21 | BOL Jetse | 71 |
22 | PHELAN Adam | 73 |