Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Pedersen
1
71 kgFortin
2
78 kgAuer
5
73 kgvan den Brand
6
71 kgBonifazio
7
63 kgNõmmela
9
69 kgde Jonge
10
65 kgBrusselman
14
76 kgEising
16
80 kgKvasina
17
72 kgKerkhof
18
76 kgHoller
19
58 kgHaller
20
68 kgSchulting
21
70 kgPadun
22
67 kgRüegg
23
66 kgOckeloen
24
66 kgStrakhov
25
70 kg
1
71 kgFortin
2
78 kgAuer
5
73 kgvan den Brand
6
71 kgBonifazio
7
63 kgNõmmela
9
69 kgde Jonge
10
65 kgBrusselman
14
76 kgEising
16
80 kgKvasina
17
72 kgKerkhof
18
76 kgHoller
19
58 kgHaller
20
68 kgSchulting
21
70 kgPadun
22
67 kgRüegg
23
66 kgOckeloen
24
66 kgStrakhov
25
70 kg
Weight (KG) →
Result →
80
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Casper | 71 |
2 | FORTIN Filippo | 78 |
5 | AUER Daniel | 73 |
6 | VAN DEN BRAND Twan | 71 |
7 | BONIFAZIO Leonardo | 63 |
9 | NÕMMELA Aksel | 69 |
10 | DE JONGE Maarten | 65 |
14 | BRUSSELMAN Twan | 76 |
16 | EISING Tijmen | 80 |
17 | KVASINA Matija | 72 |
18 | KERKHOF Tim | 76 |
19 | HOLLER Nikodemus | 58 |
20 | HALLER Patrick | 68 |
21 | SCHULTING Peter | 70 |
22 | PADUN Mark | 67 |
23 | RÜEGG Lukas | 66 |
24 | OCKELOEN Jasper | 66 |
25 | STRAKHOV Dmitry | 70 |