Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Steimle
1
73 kgThièry
2
67 kgMarchand
3
61 kgPogačar
4
66 kgZoidl
5
63 kgReutimann
6
71 kgOttema
8
77 kgJanssens
9
74 kgRabitsch
10
69 kgMoniquet
12
61 kgTeugels
14
64 kgWirtgen
15
77 kgBurgaudeau
16
61 kgWirtgen
17
63 kgvan der Horst
18
62 kgGregaard
19
66 kgRekita
20
70 kgvan der Tuuk
21
64 kg
1
73 kgThièry
2
67 kgMarchand
3
61 kgPogačar
4
66 kgZoidl
5
63 kgReutimann
6
71 kgOttema
8
77 kgJanssens
9
74 kgRabitsch
10
69 kgMoniquet
12
61 kgTeugels
14
64 kgWirtgen
15
77 kgBurgaudeau
16
61 kgWirtgen
17
63 kgvan der Horst
18
62 kgGregaard
19
66 kgRekita
20
70 kgvan der Tuuk
21
64 kg
Weight (KG) →
Result →
77
61
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | STEIMLE Jannik | 73 |
2 | THIÈRY Cyrille | 67 |
3 | MARCHAND Gianni | 61 |
4 | POGAČAR Tadej | 66 |
5 | ZOIDL Riccardo | 63 |
6 | REUTIMANN Matthias | 71 |
8 | OTTEMA Rick | 77 |
9 | JANSSENS Jimmy | 74 |
10 | RABITSCH Stephan | 69 |
12 | MONIQUET Sylvain | 61 |
14 | TEUGELS Lennert | 64 |
15 | WIRTGEN Tom | 77 |
16 | BURGAUDEAU Mathieu | 61 |
17 | WIRTGEN Luc | 63 |
18 | VAN DER HORST Dennis | 62 |
19 | GREGAARD Jonas | 66 |
20 | REKITA Szymon | 70 |
21 | VAN DER TUUK Danny | 64 |