Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Fortin
1
78 kgWalls
2
72 kgKrieger
4
71 kgStokbro
5
70 kgDonders
6
76 kgHayter
8
70 kgLisson
9
73 kgSteimle
10
73 kgvan der Horst
12
62 kgMaitre
13
71 kgFinkšt
14
70 kgCoenen
16
69 kgDoets
17
73 kgRapps
18
73 kgOttema
20
77 kgde Jonge
21
65 kgKerkhof
22
76 kgIserbyt
24
55 kgManakov
26
77 kgReynders
27
76 kg
1
78 kgWalls
2
72 kgKrieger
4
71 kgStokbro
5
70 kgDonders
6
76 kgHayter
8
70 kgLisson
9
73 kgSteimle
10
73 kgvan der Horst
12
62 kgMaitre
13
71 kgFinkšt
14
70 kgCoenen
16
69 kgDoets
17
73 kgRapps
18
73 kgOttema
20
77 kgde Jonge
21
65 kgKerkhof
22
76 kgIserbyt
24
55 kgManakov
26
77 kgReynders
27
76 kg
Weight (KG) →
Result →
78
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | FORTIN Filippo | 78 |
2 | WALLS Matthew | 72 |
4 | KRIEGER Alexander | 71 |
5 | STOKBRO Andreas | 70 |
6 | DONDERS Jelle | 76 |
8 | HAYTER Ethan | 70 |
9 | LISSON Christoffer | 73 |
10 | STEIMLE Jannik | 73 |
12 | VAN DER HORST Dennis | 62 |
13 | MAITRE Florian | 71 |
14 | FINKŠT Tilen | 70 |
16 | COENEN Dennis | 69 |
17 | DOETS Marco | 73 |
18 | RAPPS Dario | 73 |
20 | OTTEMA Rick | 77 |
21 | DE JONGE Maarten | 65 |
22 | KERKHOF Tim | 76 |
24 | ISERBYT Eli | 55 |
26 | MANAKOV Victor | 77 |
27 | REYNDERS Jens | 76 |