Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hermans
1
62 kgAerts
2
72 kgKrul
3
68 kgSteimle
4
73 kgSoete
5
72 kgSisr
6
72 kgCleppe
7
66 kgCarbel
8
73 kgIserbyt
9
55 kgAdams
10
66 kgSlik
11
71 kgvan der Meer
12
82 kgMandrysch
13
73 kgVan Dalen
14
70 kgLisson
16
73 kgvan der Haar
17
58 kgRüegg
18
66 kgPaquot
19
70 kgHník
20
57 kgCoenen
21
69 kgSweeck
22
71 kgde Jong
23
72 kg
1
62 kgAerts
2
72 kgKrul
3
68 kgSteimle
4
73 kgSoete
5
72 kgSisr
6
72 kgCleppe
7
66 kgCarbel
8
73 kgIserbyt
9
55 kgAdams
10
66 kgSlik
11
71 kgvan der Meer
12
82 kgMandrysch
13
73 kgVan Dalen
14
70 kgLisson
16
73 kgvan der Haar
17
58 kgRüegg
18
66 kgPaquot
19
70 kgHník
20
57 kgCoenen
21
69 kgSweeck
22
71 kgde Jong
23
72 kg
Weight (KG) →
Result →
82
55
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | HERMANS Quinten | 62 |
2 | AERTS Toon | 72 |
3 | KRUL Stef | 68 |
4 | STEIMLE Jannik | 73 |
5 | SOETE Daan | 72 |
6 | SISR František | 72 |
7 | CLEPPE Nicolas | 66 |
8 | CARBEL Michael | 73 |
9 | ISERBYT Eli | 55 |
10 | ADAMS Jens | 66 |
11 | SLIK Ivar | 71 |
12 | VAN DER MEER Nick | 82 |
13 | MANDRYSCH John | 73 |
14 | VAN DALEN Jason | 70 |
16 | LISSON Christoffer | 73 |
17 | VAN DER HAAR Lars | 58 |
18 | RÜEGG Lukas | 66 |
19 | PAQUOT Tom | 70 |
20 | HNÍK Karel | 57 |
21 | COENEN Dennis | 69 |
22 | SWEECK Laurens | 71 |
23 | DE JONG Timo | 72 |